ÌâÄ¿ÄÚÈÝ
ijͬѧ²Î¼Óij¸ßУ×ÔÖ÷ÕÐÉú3Ãſγ̵Ŀ¼ÊÔ£®¼ÙÉè¸ÃͬѧµÚÒ»ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊΪ
£¬µÚ¶þ¡¢µÚÈýÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊ·Ö±ðΪp£¬q£¨p£¼q£©£¬ÇÒ²»Í¬¿Î³ÌÊÇ·ñÈ¡µÃÓÅÐã³É¼¨Ï໥¶ÀÁ¢£®¼Ç¦ÎΪ¸ÃÉúÈ¡µÃÓÅÐã³É¼¨µÄ¿Î³ÌÊý£¬Æä·Ö²¼ÁÐΪ
£¨¢ñ£©Çó¸ÃÉúÖÁÉÙÓÐ1ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂʼ°Çóp£¬qµÄÖµ£»
£¨¢ò£© ÇóÊýѧÆÚÍûE¦Î£®
| 4 |
| 5 |
| ¦Î | 0 | 1 | 2 | 3 | ||||
| pi |
|
x | y |
|
£¨¢ò£© ÇóÊýѧÆÚÍûE¦Î£®
·ÖÎö£º£¨¢ñ£©ÓÃAi±íʾ¡°¸ÃÉúµÚiÃſγÌÈ¡µÃÓÅÐã³É¼¨¡±£¬i=1£¬2£¬3£®ÓÉÌâÒâµÃP(A1)=
£¬P(
1
2
3)=
£¬ÓÉ´ËÄÜÇó³ö¸ÃÉúÖÁÉÙÓÐÒ»ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊ£®´Ó¶øÄܹ»Çó³öp£¬qµÄÖµ£®
£¨¢ò£©ÓÉÌâÉèÖª¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÆä¸ÅÂÊ£¬ÓÉ´ËÄܹ»Çó³öÊýѧÆÚÍûE¦Î£®
| 4 |
| 5 |
. |
| A |
. |
| A |
. |
| A |
| 6 |
| 125 |
£¨¢ò£©ÓÉÌâÉèÖª¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÆä¸ÅÂÊ£¬ÓÉ´ËÄܹ»Çó³öÊýѧÆÚÍûE¦Î£®
½â´ð£º½â£ºÓÃAi±íʾ¡°¸ÃÉúµÚiÃſγÌÈ¡µÃÓÅÐã³É¼¨¡±£¬i=1£¬2£¬3£®
ÓÉÌâÒâµÃP(A1)=
£¬P(
1
2
3)=
£¨¢ñ£©¸ÃÉúÖÁÉÙÓÐÒ»ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊΪP=1-P(
1
2
3)=1-
=
P(
)=(1-P(A1))(1-P(A2))(1-P(A3))=
(1-p)(1-q)=
¼°P(A1A2A3)=P(A1)P(A2)P(A3)=
pq=
µÃp=
£¬q=
£®
£¨¢ò£©ÓÉÌâÉèÖª¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=
£¬
P(¦Î=1)=
¡Á
¡Á
+
¡Á
¡Á
+
¡Á
¡Á
=
£¬P(¦Î=2)=
¡Á
¡Á
+
¡Á
¡Á
+
¡Á
¡Á
=
£¬
P£¨¦Î=3£©=1-
-
-
=
£®
¡àE(¦Î)=0¡Á
+1¡Á
+2¡Á
+3¡Á
=
£®
¡à¸ÃÉúÈ¡µÃÓÅÐã³É¼¨µÄ¿Î³ÌÃÅÊýµÄÆÚÍûΪ
£®
ÓÉÌâÒâµÃP(A1)=
| 4 |
| 5 |
. |
| A |
. |
| A |
. |
| A |
| 6 |
| 125 |
£¨¢ñ£©¸ÃÉúÖÁÉÙÓÐÒ»ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊΪP=1-P(
. |
| A |
. |
| A |
. |
| A |
| 6 |
| 125 |
| 119 |
| 125 |
P(
. |
| A1 |
. |
| A2 |
. |
| A3 |
| 1 |
| 5 |
| 6 |
| 125 |
¼°P(A1A2A3)=P(A1)P(A2)P(A3)=
| 4 |
| 5 |
| 24 |
| 125 |
| 2 |
| 5 |
| 3 |
| 5 |
£¨¢ò£©ÓÉÌâÉèÖª¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=
| 6 |
| 125 |
P(¦Î=1)=
| 4 |
| 5 |
| 3 |
| 5 |
| 2 |
| 5 |
| 1 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 1 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
| 37 |
| 125 |
| 4 |
| 5 |
| 2 |
| 5 |
| 2 |
| 5 |
| 4 |
| 5 |
| 3 |
| 5 |
| 3 |
| 5 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 58 |
| 125 |
P£¨¦Î=3£©=1-
| 6 |
| 125 |
| 37 |
| 125 |
| 58 |
| 125 |
| 24 |
| 125 |
| ¦Î | 0 | 1 | 2 | 3 | ||||||||
| pi |
|
|
|
|
| 6 |
| 125 |
| 37 |
| 125 |
| 58 |
| 125 |
| 24 |
| 125 |
| 9 |
| 5 |
¡à¸ÃÉúÈ¡µÃÓÅÐã³É¼¨µÄ¿Î³ÌÃÅÊýµÄÆÚÍûΪ
| 9 |
| 5 |
µãÆÀ£º±¾Ì⿼²éÀëÉ¢Ëæ»ú±äÁ¿µÄ¸ÅÂÊ·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÊÇÀúÄê¸ß¿¼µÄ±Ø¿¼ÌâÐÍÖ®Ò»£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÅÅÁÐ×éºÏ֪ʶºÍ¸ÅÂÊ֪ʶµÄÁé»îÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ijͬѧ²Î¼Óij¸ßУ×ÔÖ÷ÕÐÉú3Ãſγ̵Ŀ¼ÊÔ£®¼ÙÉè¸ÃͬѧµÚÒ»ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊΪ
£¬µÚ¶þ¡¢µÚÈýÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊ·Ö±ðΪp£¬q£¨p£¼q£©£¬ÇÒ²»Í¬¿Î³ÌÊÇ·ñÈ¡µÃÓÅÐã³É¼¨Ï໥¶ÀÁ¢£®¼Ç¦ÎΪ¸ÃÉúÈ¡µÃÓÅÐã³É¼¨µÄ¿Î³ÌÊý£¬Æä·Ö²¼ÁÐΪ
£¨¢ñ£©Çó¸ÃÉúÖÁÉÙÓÐ1ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂʼ°Çóp£¬qµÄÖµ£»
£¨¢ò£© ÇóÊýѧÆÚÍûE¦Î£®
| ¦Î | 1 | 2 | 3 | |
| pi | x | y |
£¨¢ò£© ÇóÊýѧÆÚÍûE¦Î£®
ijͬѧ²Î¼Óij¸ßУ×ÔÖ÷ÕÐÉú3Ãſγ̵Ŀ¼ÊÔ£®¼ÙÉè¸ÃͬѧµÚÒ»ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊΪ
£¬µÚ¶þ¡¢µÚÈýÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂÊ·Ö±ðΪp£¬q£¨p£¼q£©£¬ÇÒ²»Í¬¿Î³ÌÊÇ·ñÈ¡µÃÓÅÐã³É¼¨Ï໥¶ÀÁ¢£®¼Ç¦ÎΪ¸ÃÉúÈ¡µÃÓÅÐã³É¼¨µÄ¿Î³ÌÊý£¬Æä·Ö²¼ÁÐΪ
£¨¢ñ£©Çó¸ÃÉúÖÁÉÙÓÐ1ÃſγÌÈ¡µÃÓÅÐã³É¼¨µÄ¸ÅÂʼ°Çóp£¬qµÄÖµ£»
£¨¢ò£© ÇóÊýѧÆÚÍûE¦Î£®
| ¦Î | 1 | 2 | 3 | |
| pi | x | y |
£¨¢ò£© ÇóÊýѧÆÚÍûE¦Î£®