题目内容
9.已知函数$f(x)=({m^2}-3m-3){x^{\sqrt{m}}}$为幂函数,则实数m的值为4.分析 根据幂函数的定义求出m的值即可.
解答 解:由题意得:
m2-3m-3=1,解得:m=4或m=-1,
故m=4;
故答案为:4.
点评 本题考查了幂函数的定义,是一道基础题.
练习册系列答案
相关题目
4.函数y=$\sqrt{1-x}+\sqrt{x}$的定义域为( )
| A. | (-∞,1] | B. | [0,1] | C. | [0,+∞) | D. | (-∞,0]∪[1,+∞) |
14.已知命题$p:?x∈R,{({\frac{1}{10}})^x}≤0$,若(¬p)∧q是假命题,则命题q可以是( )
| A. | 函数y=-2x2+x在[1,3)上单调递减 | B. | ln3>1 | ||
| C. | 若A∩B=A,则B⊆A | D. | lg2+lg3=lg5 |
1.双曲线$\frac{x^2}{5}-\frac{y^2}{4}=1$的( )
| A. | 实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±\frac{{2\sqrt{5}}}{5}x$,离心率$e=\frac{{3\sqrt{5}}}{5}$ | |
| B. | 实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±\frac{{\sqrt{5}}}{5}x$,离心率$e=\frac{9}{5}$ | |
| C. | 实轴长为$2\sqrt{5}$,虚轴长为4,渐近线方程为$y=±2\sqrt{5}x$,离心率$e=\frac{6}{5}$ | |
| D. | 实轴长为$2\sqrt{5}$,虚轴长为8,渐近线方程为$y=±\frac{{\sqrt{5}}}{2}x$,离心率$e=\frac{6}{5}$ |