ÌâÄ¿ÄÚÈÝ
13£®ÔÚÖ±½Ç×ø±êϵxoyÖÐÔ²CµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2+3cos¦Á\\ t=3sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{¦Ð}{4}£¨{¦Ñ¡ÊR}£©$£®£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì¼°ÆäÔ²ÐÄCµÄÖ±½Ç×ø±ê£»
£¨2£©ÉèÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó¡÷ABCµÄÃæ»ý£®
·ÖÎö £¨1£©ÀûÓÃÈý½Çº¯ÊýµÄ»ù±¾¹ØÏµÊ½£¬×ª»¯Ô²µÄ²ÎÊý·½³ÌΪÆÕͨ·½³Ì£¬È»ºóÇó³öÔ²µÄÔ²ÐÄ×ø±ê£»
£¨2£©Çó³öÖ±Ïß·½³Ì£¬ÀûÓÃÔ²Ðĵ½Ö±ÏߵľàÀë¡¢°ë¾¶¡¢°ëÏÒ³¤£¬Âú×ã¹´¹É¶¨Àí£¬Çó³öд³ö£¬È»ºóÇó½âÈý½ÇÐεÄÃæ»ý£®
½â´ð ½â£º£¨¢ñ£©Ô²C£º$\left\{{\begin{array}{l}{x=2+3cos¦Á}\\{y=3sin¦Á}\end{array}}\right.$£¨¦ÁΪ²ÎÊý£©µÃÔ²CµÄÖ±½Ç×ø±ê·½³Ì£º£¨x-2£©2+y2=9£¬
Ô²ÐÄCµÄÖ±½Ç×ø±êC£¨2£¬0£©£®¡£¨4·Ö£©
£¨¢ò£©1¡ã£®Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$¦È=\frac{¦Ð}{4}£¨{¦Ñ¡ÊR}£©$£®
¿ÉµÃ£ºÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£ºx-y=0£»¡£¨5·Ö£©
2¡ã£®Ô²ÐÄC£¨2£¬0£©µ½Ö±ÏßlµÄ¾àÀë$d=\frac{|2-0|}{{\sqrt{2}}}=\sqrt{2}$£¬Ô²CµÄ°ë¾¶r=3£¬
ÏÒ³¤$|AB|=2\sqrt{{r^2}-{d^2}}=2\sqrt{7}$£®¡£¨8·Ö£©
3¡ã£®¡÷ABCµÄÃæ»ý=$\frac{1}{2}|AB|¡Ád=\frac{1}{2}¡Á2\sqrt{7}¡Á\sqrt{2}=\sqrt{14}$£®¡£¨10·Ö£©
µãÆÀ ±¾Ì⿼²é¼«×ø±êϵÓë²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄ»¥»¯£¬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®
| A£® | y£¼x£¼z | B£® | y£¼z£¼x | C£® | x£¼y£¼z | D£® | z£¼y£¼x |
| A£® | $-1£¼a£¼\frac{1}{3}$ | B£® | $a£¼\frac{1}{3}$ | C£® | a£¼-1 | D£® | a¡Ý1 |