题目内容
7.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=0.分析 利用已知条件求出$\overrightarrow{a}$,$\overrightarrow{b}$,然后求解cos<$\overrightarrow{a}$,$\overrightarrow{b}$>.
解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$+$\overrightarrow{b}$=($\sqrt{3}$,1),
可知$\overrightarrow{a}$=(0,1),$\overrightarrow{b}$=($\sqrt{3}$,0),
则cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{0}{1×\sqrt{3}}$=0.
故答案为:0.
点评 本题考查向量的数量积,利用观察法推出向量的坐标是解题的关键.
练习册系列答案
相关题目
19.若(2x-1)2016=a0+a1x+…+a2016x2016(x∈R),则$\frac{1}{2}$+$\frac{{a}_{2}}{{2}^{2}{a}_{1}}$+$\frac{{a}_{3}}{{2}^{3}{a}_{1}}$+…+$\frac{{a}_{2016}}{{2}^{2016}{a}_{1}}$=( )
| A. | -$\frac{1}{2015}$ | B. | $\frac{1}{2016}$ | C. | -$\frac{1}{4030}$ | D. | $\frac{1}{4032}$ |
16.若关于x的不等式xex-ax+a<0的解集为(m,n)(n<0),且(m,n)中只有一个整数,则实数a的取值范围是( )
| A. | [$\frac{1}{{e}^{2}}$,$\frac{1}{e}$) | B. | [$\frac{2}{3{e}^{2}}$,$\frac{1}{2e}$) | C. | [$\frac{1}{{e}^{2}}$,$\frac{2}{e}$) | D. | [$\frac{2}{3{e}^{2}}$,$\frac{1}{e}$) |