题目内容

3.已知$\overrightarrow a=({3,1}),\overrightarrow b=({1,3-m}),\overrightarrow c=({2m,-1})$,且$\overrightarrow b⊥\overrightarrow c$.
(1)求$|{\overrightarrow a-\overrightarrow b}$|的值;
(2)若$\overrightarrow a∥({\overrightarrow b+λ\overrightarrow c})$,求λ的值.

分析 首先利用向量垂直得到m的值,然后(1)利用坐标求模长;(2)根据向量平行得到关于λ的等式解之.

解答 解:因为$\overrightarrow a=({3,1}),\overrightarrow b=({1,3-m}),\overrightarrow c=({2m,-1})$,且$\overrightarrow b⊥\overrightarrow c$.
所以2m-(3-m)=0,解得m=1,
所以$\overrightarrow{a}-\overrightarrow{b}$=(3,1)-(1,2)=(2,-1),所以$|{\overrightarrow a-\overrightarrow b}$|=$\sqrt{5}$;
(2)由(1)得到$\overrightarrow{b}+λ\overrightarrow{c}$=(1+2λ,2-λ),$\overrightarrow{a}$=(3,1),由$\overrightarrow a∥({\overrightarrow b+λ\overrightarrow c})$,得到1+2λ=3(2-λ),解得λ=1.

点评 本题考查了平面向量的垂直以及平行的坐标关系;运用了方程的思想.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网