题目内容

4.已知函数$f(x)=\left\{\begin{array}{l}{(\frac{1}{2})^x}-1,x≤0\\{log_2}x{,^{\;}}^{\;}x>0\end{array}\right.$,则$f(f(\frac{1}{2}))$=(  )
A.0B.$-\frac{1}{2}$C.1D.$-\frac{3}{2}$

分析 根据分段函数的表达式代入进行求解即可.

解答 解:f($\frac{1}{2}$)=log2$\frac{1}{2}$=-1,
则f(-1)=$(\frac{1}{2})^{-1}-1=2-1$=1,
故$f(f(\frac{1}{2}))$=f(-1)=1,
故选:C.

点评 本题主要考查函数值的定义,利用分段函数的表达式利用代入法是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网