题目内容

5.以直角坐标系xOy的原点为极点,x轴的正半轴为极轴建立极坐标系,两坐标系中的单位长度相同.已知点A的极坐标为(${\sqrt{2}$,$\frac{π}{4}}$),曲线C在直角坐标系下参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cost\\ y=\sqrt{2}sint\end{array}$(t为参数),曲线C在点A处的切线为l.
(1)求切线l的极坐标方程;
(2)已知点P直角坐标为(-$\frac{1}{4}$,$\frac{{\sqrt{3}}}{4}$),过点P任作一直线交曲线C于A,B两点,求|AB|的最小值.

分析 (1)化参数方程与普通方程,求出圆的圆心与半径,求出切线的斜率,然后求解切线方程,转化为极坐标方程.
(2)OP⊥AB时,|AB|取得最小值,此时|OP|=$\frac{1}{2}$,即可求出|AB|的最小值.

解答 解:(1)因为曲线C的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cost\\ y=\sqrt{2}sint\end{array}$(t为参数),
所以其普通方程为x2+y2=2,即曲线C为以原点为圆心,$\sqrt{2}$为半径的圆.…(5分)
由于点A(${\sqrt{2}$,$\frac{π}{4}}$),即(1,1)在圆上,且该圆过(1,1)点的半径的斜率为1,
所以切线l的斜率为-1,其普通方程为x+y-2=0,
化为极坐标方程为ρcosθ+ρsinθ=2;
(2)OP⊥AB时,|AB|取得最小值,此时|OP|=$\frac{1}{2}$,|AB|的最小值=2$\sqrt{2-\frac{1}{2}}$=$\sqrt{6}$.

点评 本题考查参数方程与普通方程以及极坐标方程的互化,直线与圆的位置关系的应用,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网