题目内容
18.设数列{an}的前n项和为Sn(n∈N*),且满足:①|a1|≠|a2|;
②r(n-p)Sn+1=(n2+n)an+(n2-n-2)a1,其中r,p∈R,且r≠0.
(1)求p的值;
(2)数列{an}能否是等比数列?请说明理由;
(3)求证:当r=2时,数列{an}是等差数列.
分析 (1)n=1时,r(1-p)(a1+a2)=2a1-2a1,其中r,p∈R,且r≠0.又|a1|≠|a2|.可得1-p=0,解得p.
(2)设an=kan-1(k≠±1),r(n-1)Sn+1=(n2+n)an+(n2-n-2)a1,可得rS3=6a2,2rS4=12a3+4a1,化为:r(1+k+k2)=6k,r(1+k+k2+k3)=6k2+2.联立解得r,k,即可判断出结论.
(3)r=2时,2(n-1)Sn+1=(n2+n)an+(n2-n-2)a1,可得2S3=6a2,4S4=12a3+4a1,6S5=20a4+10a1.化为:a1+a3=2a2,a2+a4=2a3,a3+a5=2a4.假设数列{an}的前n项成等差数列,公差为d.利用已知得出an+1,即可证明.
解答 解:(1)n=1时,r(1-p)(a1+a2)=2a1-2a1,其中r,p∈R,且r≠0.又|a1|≠|a2|.
∴1-p=0,解得p=1.
(2)设an=kan-1(k≠±1),r(n-1)Sn+1=(n2+n)an+(n2-n-2)a1,∴rS3=6a2,2rS4=12a3+4a1,
化为:r(1+k+k2)=6k,r(1+k+k2+k3)=6k2+2.联立解得r=2,k=1(不合题意),舍去,因此数列{an}不是等比数列.
(3)证明:r=2时,2(n-1)Sn+1=(n2+n)an+(n2-n-2)a1,∴2S3=6a2,4S4=12a3+4a1,6S5=20a4+10a1.
化为:a1+a3=2a2,a2+a4=2a3,a3+a5=2a4.假设数列{an}的前n项成等差数列,公差为d.
则2(n-1)$[n{a}_{1}+\frac{n(n-1)}{2}d+{a}_{n+1}]$=(n2+n)[a1+(n-1)d]+(n2-n-2)a1,化为an+1=a1+(n+1-1)d,
因此第n+1项也满足等差数列的通项公式,
综上可得:数列{an}成等差数列.
点评 本题考查了等差数列与等比数列的通项公式求和公式及其性质、数列递推关系、数学归纳法,考查了推理能力与计算能力,属于难题.
| A. | x≥0? | B. | x≥1? | C. | x≥-1? | D. | x≥-3? |
(Ⅰ)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出算式即可)
(Ⅱ)如果随机抽取的7名同学的物理、化学成绩(单位:分)对应如表:
| 学生序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| 物理成绩 | 65 | 70 | 75 | 81 | 85 | 87 | 93 |
| 化学成绩 | 72 | 68 | 80 | 85 | 90 | 86 | 91 |
| A. | [1,4] | B. | [1,2] | C. | [-1,0] | D. | [0,2] |
| 特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
| x | 555 | 559 | 551 | 563 | 552 |
| y | 601 | 605 | 597 | 599 | 598 |
(Ⅱ)求特征量y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$;并预测当特征量x为570时特征量y的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$)
| A. | 2k-2 | B. | 2k | C. | 2k-1 | D. | 与a有关 |
| A. | 3 | B. | 4 | C. | 9 | D. | 6 |