题目内容
19.分析 如图所示,建立空间直角坐标系A-BDP.$\overrightarrow{PC}$=(1,$\sqrt{3}$,-1),设直线PC的一个法向量为$\overrightarrow{u}$=(x,y,z),利用$\overrightarrow{PC}$$•\overrightarrow{u}$=x+$\sqrt{3}$y-z=0,即可得出.$\overrightarrow{PD}$=(0,$\sqrt{3}$,-1),设平面PCD的一个法向量$\overrightarrow{v}$=(x1,y1,z1),可得$\left\{\begin{array}{l}{\overrightarrow{PC}•\overrightarrow{v}=0}\\{\overrightarrow{PD}•\overrightarrow{v}=0}\end{array}\right.$,即可得出.
解答
解:如图所示,建立空间直角坐标系A-BDP.
A(0,0,0),B(1,0,0),C(1,$\sqrt{3}$,0),D(0,$\sqrt{3}$,0),P(0,0,1).
$\overrightarrow{PC}$=(1,$\sqrt{3}$,-1),
设直线PC的一个法向量为$\overrightarrow{u}$=(x,y,z),
则$\overrightarrow{PC}$$•\overrightarrow{u}$=x+$\sqrt{3}$y-z=0,
取$\overrightarrow{u}$=($\sqrt{3}$,-1,0).
$\overrightarrow{PD}$=(0,$\sqrt{3}$,-1),
设平面PCD的一个法向量$\overrightarrow{v}$=(x1,y1,z1),
则$\left\{\begin{array}{l}{\overrightarrow{PC}•\overrightarrow{v}=0}\\{\overrightarrow{PD}•\overrightarrow{v}=0}\end{array}\right.$,$\left\{\begin{array}{l}{{x}_{1}+\sqrt{3}{y}_{1}-{z}_{1}=0}\\{\sqrt{3}{y}_{1}-{z}_{1}=0}\end{array}\right.$,
令z1=$\sqrt{3}$,y1=1,x1=0,
∴$\overrightarrow{v}$=(0,1,$\sqrt{3}$).
点评 本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
| A. | (-3,0) | B. | (-∞,0) | C. | (0,3) | D. | (-3,3) |