题目内容
f(x)=| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅰ)将f(x)化为Asin(ωx+?)+k(ω>0,0<φ<
| π |
| 2 |
(Ⅱ)写出f(x)的最值及相应的x值;
(Ⅲ)若-
| π |
| 3 |
| π |
| 6 |
| 3 |
| 5 |
| ||
| 2 |
分析:(I)利用二倍角公式和两角和公式对函数解析式化简整理可得结果.
(II)利用正弦函数的性质求得函数的最大值和相应的x的值.
(III)根据题意可得sin(α+
)=
,结合α的范围可得cos(α+
)=
,再根据二倍角公式计算出sin(2α+
)与 cos(2α+
),再根据cos2α=cos[(2α+
)-
]结合两角和公式求出答案.
(II)利用正弦函数的性质求得函数的最大值和相应的x的值.
(III)根据题意可得sin(α+
| π |
| 3 |
| 3 |
| 5 |
| π |
| 3 |
| 4 |
| 5 |
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
解答:解:(Ⅰ)由题意可得:f(x)=
cos2
x+sin
xcos
x
=
•
+
sinx
=sin(x+
)+
.
(Ⅱ)当x+
=2kπ-
,k∈Z即x=2kπ-
,k∈Z时,
所以当x=2kπ-
,k∈Z时f(x)得到最小值-1+
.
当x+
=2kπ+
,k∈Z即x=2kπ+
,k∈Z
所以当x=2kπ+
,k∈Z时,f(x)得到最大值1+
.
(Ⅲ)由题意可得:因为f(α)=sin(α+
)+
=
+
所以sin(α+
)=
∵-
<α<
,
∴0<α+
<
,
∴cos(α+
)=
∴sin(2α+
)=2sin(α+
)•cos(α+
)=
cos(2α+
)=2cos2(α+
)-1=
∴cos2α=cos[(2α+
)-
]
=cos(2α+
)cos
+sin(2α+
)sin
=
.
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
=
| 3 |
| 1+cosx |
| 2 |
| 1 |
| 2 |
=sin(x+
| π |
| 3 |
| ||
| 2 |
(Ⅱ)当x+
| π |
| 3 |
| π |
| 2 |
| 5π |
| 6 |
所以当x=2kπ-
| 5π |
| 6 |
| ||
| 2 |
当x+
| π |
| 3 |
| π |
| 2 |
| π |
| 6 |
所以当x=2kπ+
| π |
| 6 |
| ||
| 2 |
(Ⅲ)由题意可得:因为f(α)=sin(α+
| π |
| 3 |
| ||
| 2 |
| 3 |
| 5 |
| ||
| 2 |
所以sin(α+
| π |
| 3 |
| 3 |
| 5 |
∵-
| π |
| 3 |
| π |
| 6 |
∴0<α+
| π |
| 3 |
| π |
| 2 |
∴cos(α+
| π |
| 3 |
| 4 |
| 5 |
∴sin(2α+
| 2π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 24 |
| 25 |
cos(2α+
| 2π |
| 3 |
| π |
| 3 |
| 7 |
| 25 |
∴cos2α=cos[(2α+
| 2π |
| 3 |
| 2π |
| 3 |
=cos(2α+
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
| 2π |
| 3 |
=
24
| ||
| 50 |
点评:本题主要考查了利用两角和公式,二倍角公式和诱导公式进行化简求值,以及三角函数的性质等.
练习册系列答案
相关题目