题目内容
已知函数f(x)=| 3 |
| π |
| 2 |
(1)求ω值;
(2)求函数y=f(x)的单调递减区间;
(3)已知f(x)在区间[0,
| π |
| 2 |
分析:(1)利用二倍角公式、两角和的正弦函数化简函数为 一个角的一个三角函数的形式,通过求出函数的周期求ω值;
(2)利用正弦函数的单调减区间求函数y=f(x)的单调递减区间;
(3)结合[0,
],求出
≤2x+
≤
,求出函数的最小值为1,求出a的值.
(2)利用正弦函数的单调减区间求函数y=f(x)的单调递减区间;
(3)结合[0,
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
解答:解:(1)f(x)=
cos2ωx+sinωxcosωx+a=sin(2ωx+
)+
+a(3分)
∵
=
,∴T=π=
,∴ω=1(5分)
(2)∵2kπ+
≤2x+
≤2kπ+
π
∴kπ+
≤x≤kπ+
π,
∴单调减区间为[kπ+
,kπ+
π](k∈Z)(8分)
(3)∵0≤x≤
,∴
≤2x+
≤
,
∴-
≤sin(2x+
)≤1,
∴f(x)min=-
+
+a=1,∴a=1(12分)
| 3 |
| π |
| 3 |
| ||
| 2 |
∵
| T |
| 2 |
| π |
| 2 |
| 2π |
| 2ω |
(2)∵2kπ+
| π |
| 2 |
| π |
| 3 |
| 3 |
| 2 |
∴kπ+
| π |
| 12 |
| 7 |
| 12 |
∴单调减区间为[kπ+
| π |
| 12 |
| 7 |
| 12 |
(3)∵0≤x≤
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
∴-
| ||
| 2 |
| π |
| 3 |
∴f(x)min=-
| ||
| 2 |
| ||
| 2 |
点评:本题是基础题,考查三角函数的公式的应用,函数的基本性质的灵活运应,考查计算能力,转化思想的应用.
练习册系列答案
相关题目