搜索
题目内容
设函数
。
(Ⅰ)若
时,函数
取得极值,求函数
的图像在
处的切线方程;
(Ⅱ)若函数
在区间
内不单调,求实数
的取值范围。
试题答案
相关练习册答案
(Ⅰ)切线方程为
;(Ⅱ)
.
试题分析:(Ⅰ)求函数
的图像在
处的切线方程,首先求出函数
的解析式,而已知若
时,函数
取得极值,因此先求出数
的导函数,令导函数在
处的值为
,求出
的解析式,将
代入
求出切点坐标,将
代入导函数求出切线的斜率,利用点斜式求出切线的方程.(Ⅱ)若函数
在区间
内不单调,即函数
在区间
有极值,即导函数
在区间
上有解,令导函数
为
,分离出
得
,求出
在
上的范围,从而得实数
的取值范围.
试题解析:(Ⅰ)
由
得
∴
当
时,
即切点
令
得
∴切线方程为
;
(Ⅱ)
在区间
内不单调,即
在
有解,所以
,
,由
,
,令
,
,知
在
单调递减,在
,所以
,即
,
,即
,而当
时,
∴舍去 综上
练习册系列答案
名校名师培优作业本加核心试卷系列答案
名师点拨培优训练系列答案
期末满分冲刺卷系列答案
达标测试系列答案
全程金卷系列答案
亮点激活精编提优大试卷系列答案
清华绿卡核心密卷优选期末卷 系列答案
期末夺冠卷系列答案
期末轻松100分系列答案
期末考试卷系列答案
相关题目
已知P(
)为函数
图像上一点,O为坐标原点,记直线OP的斜率
。
(Ⅰ)求函数
的单调区间;
(Ⅱ)设
,求函数
的最小值。
(本小题13分) 已知函数
(
为自然对数的底数)。
(1)若
,求函数
的单调区间;
(2)是否存在实数
,使函数
在
上是单调增函数?若存在,求出
的值;若不存在,请说明理由。恒成立,则
,又
,
已知
.
(1)当
时,求
上的值域;
(2)求函数
在
上的最小值;
(3)证明: 对一切
,都有
成立
已知函数
,
,其中
且
.
(Ⅰ) 当
,求函数
的单调递增区间;
(Ⅱ)若
时,函数
有极值,求函数
图象的对称中心的坐标;
(Ⅲ)设函数
(
是自然对数的底数),是否存在a使
在
上为减函数,若存在,求实数a的范围;若不存在,请说明理由.
已知函数
.
(Ⅰ)当
时,试讨论
的单调性;
(Ⅱ)设
,当
时,若对任意
,存在
,使
,求实数
取值范围.
已知函数
,且
,则当
时,
的取值范围是 ( )
A.
B.
C.
D.
定义在R上的函数f(x)满足(x+2)
f’(x)<0,又a=f(log
0.5
3),b=f((
)
0.3
),c=f(ln3),则( )
A.a<b<c
B.b<c<a
C.c<a<b
D.c< b<a
已知
,现给出如下结论:
①
;②
;③
;④
.
其中正确结论的序号为( )
A.①③
B.①④
C.②④
D.②③
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案