题目内容
2.设x∈R,则“x-2<1”是“x2+x-2>0”的( )| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
分析 根据不等式的性质,结合充分条件和必要条件的定义进行判断即可.
解答 解:由x2+x-2>0得x>1或x<-2,由x-2<1得x<3
即“x-2<1”是“x2+x-2>0”的既不充分也不必要条件.
故选:D.
点评 本题主要考查充分条件和必要条件的判断,比较基础.
练习册系列答案
相关题目
13.已知一个圆锥内接于球O(圆锥的底面圆周及顶点均在球面上),若球的半径R=5,圆锥的高是底面半径的2倍,则圆锥的体积为( )
| A. | 128π | B. | 32π | C. | $\frac{128π}{3}$ | D. | $\frac{32π}{3}$ |
10.已知a∈R,函数f(x)=x2(x-a).
(Ⅰ)若函数f(x)在区间(0,$\frac{2}{3}$)内是减函数,求实数a的取值范围;
(Ⅱ)当a=2时,求函数f(x)在区间[1,2]上的最小值.
(Ⅰ)若函数f(x)在区间(0,$\frac{2}{3}$)内是减函数,求实数a的取值范围;
(Ⅱ)当a=2时,求函数f(x)在区间[1,2]上的最小值.
7.已知函数f(x)=-x3+ax2-x-1在(-∞,+∞)上存在极值,则实数a的取值范围是( )
| A. | [-$\sqrt{3}$,$\sqrt{3}$] | B. | (-$\sqrt{3}$,$\sqrt{3}$) | C. | (-∞,-$\sqrt{3}$)∪($\sqrt{3}$,+∞) | D. | (-∞,-$\sqrt{3}$]∪[$\sqrt{3}$,+∞) |
11.已知点P是双曲线C:$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1上一点,过P作C的两条渐近线的垂线,垂足分别为A,B两点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$=( )
| A. | -$\frac{12}{7}$ | B. | $\frac{12}{7}$ | C. | $\frac{12}{49}$ | D. | -$\frac{12}{49}$ |