题目内容
4.二项式${(x-\frac{1}{{\root{3}{x}}})^8}$的展开式中,常数项是28.分析 利用通项公式即可得出.
解答 解:通项公式Tr+1=${∁}_{8}^{r}$x8-r$(-\frac{1}{\root{3}{x}})^{r}$=(-1)r${∁}_{8}^{r}$${x}^{8-\frac{4r}{3}}$,
令8-$\frac{4r}{3}$=0,解得r=6.
∴常数项=${∁}_{8}^{6}$=28.
故答案为:28.
点评 本题考查了二项式定理的应用,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
14.如图所示,一个几何体的三视图中四边形均为边长为4的正方形,则这个几何体的体积为( )

| A. | $64-\frac{32π}{3}$ | B. | 64-16π | C. | $64-\frac{16π}{3}$ | D. | $64-\frac{8π}{3}$ |
12.某届奥运会上,中国队以26金18银26铜的成绩称金牌榜第三、奖牌榜第二,某校体育爱好者在高三 年级一班至六班进行了“本届奥运会中国队表现”的满意度调查(结果只有“满意”和“不满意”两种),从被调查的学生中随机抽取了50人,具体的调查结果如表:
(1)在高三年级全体学生中随机抽取一名学生,由以上统计数据估计该生持满意态度的概率;
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.
| 班号 | 一班 | 二班 | 三班 | 四班 | 五班 | 六班 |
| 频数 | 5 | 9 | 11 | 9 | 7 | 9 |
| 满意人数 | 4 | 7 | 8 | 5 | 6 | 6 |
(2)若从一班至二班的调查对象中随机选取4人进行追踪调查,记选中的4人中对“本届奥运会中国队表现”不满意的人数为ξ,求随机变量ξ的分布列及数学期望.
19.
一个几何体的三视图如图所示,其中正视图和侧视图相同,其上部分是半圆,下部分是边长为2的正方形;俯视图是边长为2的正方形及其外接圆.则该几何体的体积为( )
| A. | $4+\frac{2π}{3}$ | B. | $4+\frac{{2\sqrt{2}π}}{3}$ | C. | $8+\frac{{4\sqrt{2}π}}{3}$ | D. | $8+\frac{{8\sqrt{2}π}}{3}$ |