题目内容
(2013•湛江一模)若(x+1)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,则a0=( )
分析:根据 (x+1)5=[2+(x-1)]5=
•25+
•24(x-1)+
•23•(x-1)2+
•22(x-1)3+
•2•(X-1)4+
•(x-1)5,结合所给的条件求得a0的值.
| C | 0 5 |
| C | 1 5 |
| C | 2 5 |
| C | 3 5 |
| C | 4 5 |
| C | 5 5 |
解答:解:∵(x+1)5=[2+(x-1)]5=
•25+
•24(x-1)+
•23•(x-1)2+
•22(x-1)3+
•2•(X-1)4+
•(x-1)5,
而且 (x+1)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,
故 a0=
•25=32,
故选B.
| C | 0 5 |
| C | 1 5 |
| C | 2 5 |
| C | 3 5 |
| C | 4 5 |
| C | 5 5 |
而且 (x+1)5=a0+a1(x-1)+a2(x-1)2+…+a5(x-1)5,
故 a0=
| C | 5 5 |
故选B.
点评:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.
练习册系列答案
相关题目