题目内容
15.若对于任意实数x,恒有${x^5}={a_0}+{a_1}(x+2)+{a_2}{(x+2)^2}+…+{a_5}{(x+2)^5}$成立,则a3=40,a0+a1+a2+a4+a5=-41.分析 x5=(x+2-2)5=(-2)5+${∁}_{5}^{1}(-2)^{4}(x+2)$+${∁}_{5}^{2}(-2)^{3}(x+2)^{2}$+${∁}_{5}^{3}(-2)^{2}(x+2)^{3}$+${∁}_{5}^{4}(-2)(x+2)^{4}$+(x+2)5.可得a3=$(-2)^{2}{∁}_{5}^{3}$.令x=-1,可得-1=a0+a1+a2+a3+a4+a5,即可得出.
解答 解:x5=(x+2-2)5=(-2)5+${∁}_{5}^{1}(-2)^{4}(x+2)$+${∁}_{5}^{2}(-2)^{3}(x+2)^{2}$+${∁}_{5}^{3}(-2)^{2}(x+2)^{3}$+${∁}_{5}^{4}(-2)(x+2)^{4}$+(x+2)5.
则a3=$(-2)^{2}{∁}_{5}^{3}$=40.
令x=-1,可得-1=a0+a1+a2+a3+a4+a5,
∴a0+a1+a2+a4+a5=-1-a3=-41.
故答案为:40,-41.
点评 本题考查了二项式定理的应用、方程的思想方法,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
6.已知sinα+sinβ+sinγ=0和cosα+cosβ+cosγ=0,则cos(α-β)的值是( )
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |