题目内容

设函数
(1)求函数f(x)的单调区间,并求函数f(x)的极大值和极小值;
(2)当x∈[a+1, a+2]时,不等,求a的取值范围.
(1)函数f(x)的极大值为b,极小值为-a3+b   
(2)a的取值范围是
(1)∵f′(x)=-x2+4ax-3a2=-(x-3a)(x-a),由f′(x)>0得:a<x<3a
由f′(x)<0得,x<a或x>3a,
则函数f(x)的单调递增区间为(a, 3a),单调递减区间为(-∞,a)和(3a,+∞)
列表如下:
x
(-∞,a)
a
(a, 3a)
3a
(3a,+ ∞)
f′(x)

0
+
0

f(x)

a3+b

b

∴函数f(x)的极大值为b,极小值为-a3+b    …………………………7分
(2)上单调递
减,因此
∵不等式|f′(x)|≤a恒成立,
 即a的取值范围是
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网