题目内容
19.设m∈R,过定点A的动直线mx+y-1=0与过定点B的动直线x-my+m+2=0交于点P(x,y),则|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的最大值为( )
| A. | 2 | B. | $\sqrt{2}$+1 | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$+2 |
分析 由动直线mx+y-1=0,令$\left\{\begin{array}{l}{x=0}\\{y-1=0}\end{array}\right.$,解得A(0,1),同理可得B(-2,1).|AB|=2.当PA⊥PB时,$|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}$=|AB|2=4,利用|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|≤$\sqrt{2[|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}]}$即可得出.
解答 解:由动直线mx+y-1=0,令$\left\{\begin{array}{l}{x=0}\\{y-1=0}\end{array}\right.$,解得A(0,1),同理可得B(-2,1).
∵|AB|=$\sqrt{{2}^{2}+0}$=2.
∴当PA⊥PB时,$|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}$=|AB|2=4
∴|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|≤$\sqrt{2[|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2}]}$=$\sqrt{2×{2}^{2}}$=2$\sqrt{2}$,当且仅当$|\overrightarrow{PA}|=|\overrightarrow{PB}|$=$\sqrt{2}$时取等号.
∴|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的最大值为2$\sqrt{2}$.
故选:C.
点评 本题考查了直线系、勾股定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.
| A. | $[-1,\frac{1}{2}]$ | B. | $[\frac{1}{2},5]$ | C. | [-1,5] | D. | [-1,3] |