题目内容
14.已知tanα=-$\frac{1}{3}$,求下列各式的值:(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)2sin2α-$\frac{3}{2}$sinαcosα+5cos2α;
(3)$\frac{1}{1-sinαcosα}$.
分析 (1)分子分母同除以cosα,由同角三角函数关系式即可得解.
(2)由倍角公式和万能公式化简后结合已知即可得解.
(3)由倍角公式和万能公式化简后结合已知即可得解.
解答 解:∵tanα=-$\frac{1}{3}$,
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$=$\frac{4tanα-2}{5+3tanα}$=$\frac{4×(-\frac{1}{3})-2}{5+3×(-\frac{1}{3})}$=-$\frac{5}{6}$;
(2)∵sin2α=$\frac{2tanα}{1+ta{n}^{2}α}$=-$\frac{3}{5}$,cos2α=$\frac{1-ta{n}^{2}α}{1+ta{n}^{2}α}$=$\frac{4}{5}$
∴2sin2α-$\frac{3}{2}$sinαcosα+5cos2α=1-cos2α-$\frac{3}{4}$sin2α+$\frac{5}{2}$(1+cos2α)=$\frac{7}{2}$-$\frac{3}{4}$sin2α+$\frac{3}{2}$cos2α=$\frac{7}{2}$-$\frac{3}{4}$×(-$\frac{3}{5}$)+$\frac{3}{2}$×$\frac{4}{5}$=$\frac{103}{20}$;
(3)$\frac{1}{1-sinαcosα}$=$\frac{1}{1-\frac{1}{2}sin2α}$=$\frac{1}{1-\frac{1}{2}×\frac{2tanα}{1+ta{n}^{2}α}}$=$\frac{10}{13}$.
点评 本题主要考查了倍角公式,万能公式,同角三角函数关系式的应用,属于基本知识的考查.
| A. | ±2 | B. | ±$\sqrt{3}$ | C. | ±$\frac{2\sqrt{3}}{3}$ | D. | ±3 |
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
最大值为( )
| A. | 2 | B. | $\sqrt{2}$+1 | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$+2 |