题目内容

5.已知函数f(x)=$\sqrt{2}$sinx+$\sqrt{6}$cosx(x∈R).
(Ⅰ)若a∈[0,π]且f(a)=2,求a;
(Ⅱ)先将y=f(x)的图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到的图象关于直线x=$\frac{3π}{4}$对称,求θ的最小值.

分析 (Ⅰ)有条阿金利用辅助角公式化简函数f(x)的解析式,再利用f(a)=2,求得a的值.
(Ⅱ)根据y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,求得θ的最小值.

解答 解:(Ⅰ)∵函数f(x)=$\sqrt{2}$sinx+$\sqrt{6}$cosx=2$\sqrt{2}$sin(x+$\frac{π}{3}$),
∵a∈[0,π],∴a+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{4π}{3}$],∵f(a)=2$\sqrt{2}$sin(a+$\frac{π}{3}$)=2,
∴sin(a+$\frac{π}{3}$)=$\frac{\sqrt{2}}{2}$,∴a+$\frac{π}{3}$=$\frac{3π}{4}$,∴a=$\frac{5π}{12}$.
(Ⅱ)先将y=f(x)的图象上所有点的横坐标缩短到原来的$\frac{1}{2}$倍(纵坐标不变),
得到 y=2$\sqrt{2}$sin(2x+$\frac{π}{3}$)的图象;
再将得到的图象上所有点向右平行移动θ(θ>0)个单位长度,得到y=2$\sqrt{2}$sin(2x-2θ+$\frac{π}{3}$)的图象,
再结合得到的图象关于直线x=$\frac{3π}{4}$对称,可得$\frac{3π}{2}$-2θ+$\frac{π}{3}$=kπ+$\frac{π}{2}$,
求得θ=$\frac{2π}{3}$-$\frac{kπ}{2}$,k∈Z,故θ的最小值为$\frac{π}{6}$.

点评 本题主要考查辅助角公式,y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网