题目内容
已知函数f(x)的导数f′(x)=3x2-3ax,f(0)=b,a,b为实数,1<a<2,
(1)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程.
(1)若f(x)在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(2)在(1)条件下,求经过点P(2,1)且与曲线f(x)相切的直线l的方程.
考点:利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(1)由函数的导函数得到原函数为f(x)=x3-
ax2+b,根据f(x)在区间[-1,1]上的单调性求其最大值和最小值,由最小值、最大值分别为-2、1求a、b的值;
(2)把(1)中求得的a,b的值代入f(x)的解析式,然后分点P(2,1)是切点和不是切点求解经过点P(2,1)且与曲线f(x)相切的直线l的方程.
| 3 |
| 2 |
(2)把(1)中求得的a,b的值代入f(x)的解析式,然后分点P(2,1)是切点和不是切点求解经过点P(2,1)且与曲线f(x)相切的直线l的方程.
解答:
解:(1)由已知得,f(x)=x3-
ax2+b,
由f′(x)=0,得x1=0,x2=a.
∵x∈[-1,1],1<a<2,
∴当x∈[-1,0)时,f′(x)>0,f(x)递增;
当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[-1,1]上的最大值为f(0)=b,
∴b=1.
又f(1)=1-
a+1=2-
a,
f(-1)=-1-
a+1=-
a,
∴f(-1)<f(1).即-
a=-2,得a=
.
故a=
,b=1;
(2)由(1)得f(x)=x3-2x2+1,f′(x)=3x2-4x,点P(2,1)在曲线f(x)上.
①当切点为P(2,1)时,切线l的斜率k=f′(x)|x=2=4,
∴l的方程为y-1=4(x-2),即4x-y-7=0.
②当点P不是切点时,设切点为Q(x0,y0)(x0≠2),
切线l的斜率k=k=f′(x0)=3x02-4x0,
∴l的方程为y-y0=(3x02-4x0)(x-x0).
又点P(2,1)在l上,
∴1-y0=(3x02-4x0)(2-x0),
∴1-(x03-2x02+1)=(3x02-4x0)(2-x0),
∴x02(2-x0)=(3x02-4x0)(2-x0),
∴x02=3x02-4x0,
即2x0(x0-2)=0,
∴x0=0.
∴切线l的方程为y=1.
故所求切线l的方程为4x-y-7=0或y=1.
| 3 |
| 2 |
由f′(x)=0,得x1=0,x2=a.
∵x∈[-1,1],1<a<2,
∴当x∈[-1,0)时,f′(x)>0,f(x)递增;
当x∈(0,1]时,f′(x)<0,f(x)递减.
∴f(x)在区间[-1,1]上的最大值为f(0)=b,
∴b=1.
又f(1)=1-
| 3 |
| 2 |
| 3 |
| 2 |
f(-1)=-1-
| 3 |
| 2 |
| 3 |
| 2 |
∴f(-1)<f(1).即-
| 3 |
| 2 |
| 4 |
| 3 |
故a=
| 4 |
| 3 |
(2)由(1)得f(x)=x3-2x2+1,f′(x)=3x2-4x,点P(2,1)在曲线f(x)上.
①当切点为P(2,1)时,切线l的斜率k=f′(x)|x=2=4,
∴l的方程为y-1=4(x-2),即4x-y-7=0.
②当点P不是切点时,设切点为Q(x0,y0)(x0≠2),
切线l的斜率k=k=f′(x0)=3x02-4x0,
∴l的方程为y-y0=(3x02-4x0)(x-x0).
又点P(2,1)在l上,
∴1-y0=(3x02-4x0)(2-x0),
∴1-(x03-2x02+1)=(3x02-4x0)(2-x0),
∴x02(2-x0)=(3x02-4x0)(2-x0),
∴x02=3x02-4x0,
即2x0(x0-2)=0,
∴x0=0.
∴切线l的方程为y=1.
故所求切线l的方程为4x-y-7=0或y=1.
点评:本题考查利用导数研究曲线上某点处的切线方程,考查了利用导数求函数在闭区间上的最值,训练了分类讨论的数学思想方法,是中档题.
练习册系列答案
相关题目