题目内容
在△OAB的边OA、OB上分别有一点P、Q,已知|
|:|
|=1:2,|
|:|
|=3:2,连接AQ、BP,设它们交于点R,若
=
,
=
.
(Ⅰ)用
与
表示
;
(Ⅱ)过R作RH⊥AB,垂足为H,若|
|=1,|
|=2,
与
的夹角θ∈[
,
],求
的范围.
| OP |
| PA |
| OQ |
| QB |
| OA |
| a |
| OB |
| b |
(Ⅰ)用
| a |
| b |
| OR |
(Ⅱ)过R作RH⊥AB,垂足为H,若|
| a |
| b |
| a |
| b |
| π |
| 3 |
| 2π |
| 3 |
|
| ||
|
|
(I)由
=
,点P在边OA上且|
|:|
|=1:2,
可得
=
(
-
),
∴
=
.同理可得
=
.(2分)
设
=λ
,
=μ
(λ,μ∈R),
则
=
+
=
+λ
=
+λ(
-
)=(1-λ)
+
λ
,
=
+
=
+μ
=
+μ(
-b)=
μ
+(1-μ)
.(4分)
∵向量
与
不共线,
∴
解得λ=
,μ=
∴
=
+
.(5分)
(II)设
=γ,则
=γ
=γ(
-
),
∴
=
-
=
-(
-
)=γ(
-
)-(
+
)+
=(γ-
)
+(
-γ)
.(6分)
∵
⊥
,
∴
•
=0,
即[(γ-
)
+(
-γ)
]•(
-
)=0(γ-
)
2+(
-γ)
2+(
-2γ)
•
=0(8分)
又∵|
|=1,|
|=2,
•
=|
||
|cosθ=2cosθ,
∴(γ-
)+4(γ-
)+(
-2γ)(2cosθ)=0
∴γ=
×
=
(
+2).(10分)
∵θ∈[
,
],
∴cosθ∈[-
,
],
∴5-4cosθ∈[3,7],
∴
(
+2)≤γ≤
(
+2),即
≤γ≤
.
故
的取值范围是[
,
].(12分)
| OA |
| a |
| OP |
| PA |
可得
| OP |
| 1 |
| 2 |
| a |
| OP |
∴
| OP |
| 1 |
| 3 |
| a |
| OQ |
| 3 |
| 5 |
| b |
设
| AR |
| AQ |
| BR |
| BP |
则
| OR |
| OA |
| AR |
| OA |
| AQ |
| a |
| 3 |
| 5 |
| b |
| a |
| a |
| 3 |
| 5 |
| b |
| OR |
| OB |
| BR |
| OB |
| BP |
| b |
| 1 |
| 3 |
| a |
| 1 |
| 3 |
| a |
| b |
∵向量
| a |
| b |
∴
|
| 5 |
| 6 |
| 1 |
| 2 |
∴
| OR |
| 1 |
| 6 |
| a |
| 1 |
| 2 |
| b |
(II)设
|
| ||
|
|
| BH |
| BA |
| a |
| b |
∴
| RH |
| BH |
| BR |
| BH |
| OR |
| OB |
| a |
| b |
| 1 |
| 6 |
| a |
| 1 |
| 2 |
| b |
| b |
| 1 |
| 6 |
| a |
| 1 |
| 2 |
| b |
∵
| RH |
| BA |
∴
| RH |
| BA |
即[(γ-
| 1 |
| 6 |
| a |
| 1 |
| 2 |
| b |
| a |
| b |
| 1 |
| 6 |
| a |
| 1 |
| 2 |
| b |
| 2 |
| 3 |
| a |
| b |
又∵|
| a |
| b |
| a |
| b |
| a |
| b |
∴(γ-
| 1 |
| 6 |
| 1 |
| 2 |
| 2 |
| 3 |
∴γ=
| 1 |
| 6 |
| 13-8cosθ |
| 5-4cosθ |
| 1 |
| 6 |
| 3 |
| 5-4cosθ |
∵θ∈[
| π |
| 3 |
| 2π |
| 3 |
∴cosθ∈[-
| 1 |
| 2 |
| 1 |
| 2 |
∴5-4cosθ∈[3,7],
∴
| 1 |
| 6 |
| 3 |
| 7 |
| 1 |
| 6 |
| 3 |
| 3 |
| 17 |
| 42 |
| 1 |
| 2 |
故
|
| ||
|
|
| 17 |
| 42 |
| 1 |
| 2 |
练习册系列答案
相关题目