题目内容
14.双曲线$\frac{x^2}{3}-\frac{y^2}{6}=1$的离心率e=( )| A. | $\sqrt{3}$ | B. | $\sqrt{2}$ | C. | 3 | D. | $\sqrt{6}$ |
分析 根据题意,由双曲线的标准方程可得a、b的值,计算可得c的值,由双曲线的离心率公式计算可得答案.
解答 解:根据题意,双曲线的方程为:$\frac{x^2}{3}-\frac{y^2}{6}=1$,
则a=$\sqrt{3}$,b=$\sqrt{6}$,
即c2=3+6=9,即c=3,
则其离心率e=$\frac{c}{a}$=$\sqrt{3}$;
故选:A.
点评 本题考查双曲线的几何性质,关键是利用标准方程求出a、b的值.
练习册系列答案
相关题目
4.已知点A(2,1)和B(-1,3),若直线3x-2y-a=0与线段AB相交,则a的取值范围是( )
| A. | -4≤a≤9 | B. | a≤-4或a≥9 | C. | -9≤a≤4 | D. | a≤-9或a≥4 |
5.若椭圆$\frac{y^2}{16}+\frac{x^2}{9}=1和双曲线\frac{y^2}{4}-\frac{x^2}{5}=1$的共同焦点为F1、F2,P是两曲线的一个交点,则|PF1|•|PF2|的值为( )
| A. | 12 | B. | 14 | C. | 3 | D. | 21 |
2.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)
| 日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
| 昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
| 就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程y=bx+a;
(附:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$)