题目内容

8.已知不等式9ax+8≥$\frac{36x}{2{x}^{2}+1}$+1在[$\frac{1}{2}$,+∞)上恒成立,则实数a的取值范围是(  )
A.($\frac{8}{9}$,+∞)B.(-∞,$\frac{8}{9}$)C.[$\frac{8}{9}$,+∞)D.(-∞,$\frac{8}{9}$]

分析 由题意可得a≥$\frac{4}{2{x}^{2}+1}$-$\frac{8}{9x}$对x≥$\frac{1}{2}$恒成立,由f(x)=$\frac{4}{2{x}^{2}+1}$-$\frac{8}{9x}$,求得导数,判断符号,得到单调性,可得最大值,即可得到a的范围.

解答 解:由9ax+8≥$\frac{36x}{2{x}^{2}+1}$,可得
a≥$\frac{4}{2{x}^{2}+1}$-$\frac{8}{9x}$对x≥$\frac{1}{2}$恒成立,
由f(x)=$\frac{4}{2{x}^{2}+1}$-$\frac{8}{9x}$的导数为
f′(x)=-$\frac{16x}{(2{x}^{2}+1)^{2}}$+$\frac{8}{9{x}^{2}}$,
由8(2x2+1)2-144x3=0,
可得在x≥$\frac{1}{2}$时,解得x=$\frac{1}{2}$,
x≥$\frac{1}{2}$时,f′(x)<0,即f(x)递减,
可得f($\frac{1}{2}$)取得最大值,且为$\frac{8}{3}$-$\frac{16}{9}$=$\frac{8}{9}$,
即有a≥$\frac{8}{9}$.
故选:C.

点评 本题考查不等式恒成立问题的解法,注意运用参数分离和导数判断单调性,求得最大值,是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网