题目内容

10.已知:$\overrightarrow{a}$=(2cosx,sinx),$\overrightarrow{b}$=($\sqrt{3}$cosx,2cosx),设函数f(x)=$\overrightarrow{a}•\overrightarrow{b}$-$\sqrt{3}$(x∈R)求:
(1)f(x)的最小正周期及最值;
(2)f(x)的对称轴及单调递增区间.

分析 (1)使用向量的数量积公式得出f(x)并化简,利用正弦函数的性质得出f(x)的周期和最值;
(2)令2x+$\frac{π}{3}$=$\frac{π}{2}+kπ$解出f(x)的对称轴,令-$\frac{π}{2}+2kπ$≤2x+$\frac{π}{3}$≤$\frac{π}{2}+2kπ$解出f(x)的增区间.

解答 解:(1)f(x)=2$\sqrt{3}$cos2x+2sinxcosx-$\sqrt{3}$=$\sqrt{3}$+$\sqrt{3}$cos2x+sin2x-$\sqrt{3}$=2sin(2x+$\frac{π}{3}$).
∴f(x)的最小正周期T=$\frac{2π}{2}$=π,f(x)的最大值为2,f(x)的最小值为-2.
(2)令2x+$\frac{π}{3}$=$\frac{π}{2}+kπ$得x=$\frac{π}{12}$+$\frac{kπ}{2}$,∴f(x)的对称轴为x=$\frac{π}{12}$+$\frac{kπ}{2}$.
令-$\frac{π}{2}+2kπ$≤2x+$\frac{π}{3}$≤$\frac{π}{2}+2kπ$,解得-$\frac{5π}{12}$+kπ≤x≤$\frac{π}{12}$+kπ,∴f(x)的单调增区间是[-$\frac{5π}{12}$+kπ,$\frac{π}{12}$+kπ],k∈Z.

点评 本题考查了三角函数的恒等变换和正弦函数的性质,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网