题目内容
已知cos(α+β)=
,cos(α-β)=-
,
<α+β<2π,,
<α-β<π求cos2α,cos2β的值.
| 4 |
| 5 |
| 4 |
| 5 |
| 3π |
| 2 |
| π |
| 2 |
∵cos(α+β)=
,cos(α-β)=-
,
<α+β<2π,
∴sin(α+β)=-
,sin(α-β)=
,
∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)=
×
-
×
=-
.
cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=
×
+
×
=-1.
| 4 |
| 5 |
| 4 |
| 5 |
| 3π |
| 2 |
∴sin(α+β)=-
| 3 |
| 5 |
| 3 |
| 5 |
∴cos2α=cos[(α+β)+(α-β)]=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)=
| 4 |
| 5 |
| -4 |
| 5 |
| -3 |
| 5 |
| 3 |
| 5 |
| 7 |
| 25 |
cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=
| 4 |
| 5 |
| -4 |
| 5 |
| -3 |
| 5 |
| 3 |
| 5 |
练习册系列答案
相关题目