ÌâÄ¿ÄÚÈÝ

16£®ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=m+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.£¨t$Ϊ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£®Ö±Ïßl¹ýµã$£¨-2\sqrt{2}£¬0£©$£®
£¨¢ñ£©ÈôÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬Çó|FA|•|FB|µÄÖµ£»
£¨¢ò£©ÇóÇúÏßCµÄÄÚ½Ó¾ØÐεÄÖܳ¤µÄ×î´óÖµ£®

·ÖÎö £¨¢ñ£©¸ù¾ÝÌâÒ⣬½«ÇúÏßCµÄ¼«×ø±ê·½³Ì±äÐÎΪ±ê×¼·½³Ì£¬ÓÉÖ±Ïß¹ýµÄµãµÄ×ø±ê¿ÉµÃmµÄÖµ£¬½«Ö±ÏߵIJÎÊý·½³ÌÓëÇúÏßCµÄ·½³ÌÁªÁ¢£¬¿ÉµÃt2-2t-2=0£¬ÓÉÒ»Ôª¶þ´Î·½³Ì¸ùÓëϵÊýµÄ¹ØÏµ¼ÆËã¿ÉµÃ´ð°¸£»
£¨¢ò£©Ð´³öÇúÏßCµÄ²ÎÊý·½³Ì£¬·ÖÎö¿ÉµÃÒÔPΪ¶¥µãµÄÄÚ½Ó¾ØÐÎÖܳ¤l=$4¡Á£¨{2\sqrt{3}cos¦È+2sin¦È}£©=16sin£¨{¦È+\frac{¦Ð}{3}}£©£¨{0£¼¦È£¼\frac{¦Ð}{2}}£©$£¬ÓÉÕýÏÒº¯ÊýµÄÐÔÖÊ·ÖÎö¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨¢ñ£©¸ù¾ÝÌâÒ⣬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È+3¦Ñ2sin2¦È=12£¬
ÔòÆä±ê×¼·½³ÌΪ $\frac{x^2}{12}+\frac{y^2}{4}=1$£¬Æä×ó½¹µãΪ$£¨{-2\sqrt{2}£¬0}£©$£¬
Ö±Ïßl¹ýµã$£¨-2\sqrt{2}£¬0£©$£¬Æä²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=m+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.£¨t$Ϊ²ÎÊý£©£¬
Ôò$m=-2\sqrt{2}$£¬
½«Ö±ÏßlµÄ²ÎÊý·½³Ì$\left\{\begin{array}{l}x=-2\sqrt{2}+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$ÓëÇúÏßCµÄ·½³Ì $\frac{x^2}{12}+\frac{y^2}{4}=1$ÁªÁ¢£¬
µÃt2-2t-2=0£¬
Ôò|FA|•|FB|=|t1t2|=2£®
£¨¢ò£©ÓÉÇúÏßCµÄ·½³ÌΪ $\frac{x^2}{12}+\frac{y^2}{4}=1$£¬
¿ÉÉèÇúÏßCÉϵ͝µã$P£¨{2\sqrt{3}cos¦È£¬2sin¦È}£©$£¬
ÔòÒÔPΪ¶¥µãµÄÄÚ½Ó¾ØÐÎÖܳ¤l=$4¡Á£¨{2\sqrt{3}cos¦È+2sin¦È}£©=16sin£¨{¦È+\frac{¦Ð}{3}}£©£¨{0£¼¦È£¼\frac{¦Ð}{2}}£©$£¬
ÓÖÓÉsin£¨¦È+$\frac{¦Ð}{3}$£©¡Ü1£¬Ôòl¡Ü16£»
Òò´Ë¸ÃÄÚ½Ó¾ØÐÎÖܳ¤µÄ×î´óֵΪ16£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²¡¢Ö±Ïߵļ«×ø±ê·½³Ì¡¢²ÎÊý·½³Ì£¬Éæ¼°ÍÖÔ²ÓëÖ±ÏßµÄλÖùØÏµ£¬¹Ø¼üÊÇÇó³öÍÖÔ²¡¢Ö±ÏߵįÕͨ·½³Ì£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø