题目内容
9.已知函数f(x)的定义域为(0,+∞),且满足f(x)+x•f'(x)>0(f'(x)是f(x)的导函数),则不等式(x-1)f(x2-1)<f(x+1)的解集为( )| A. | (-1,2) | B. | (1,2) | C. | (1,+∞) | D. | (-∞,2) |
分析 根据条件构造函数g(x)=xf(x),求函数的导数,利用函数单调性和导数之间的关系进行转化求解即可.
解答 解:设g(x)=xf(x),则g′(x)=f(x)+x•f'(x),
∵f(x)+x•f'(x)>0,∴g′(x)>0,
即g(x)在(0,+∞)为增函数,
则不等式(x-1)f(x2-1)<f(x+1)等价为(x-1)(x+1)f(x2-1)<(x+1)f(x+1),
即(x2-1)f(x2-1)<(x+1)f(x+1),
即g(x2-1)<g(x+1),
∵g(x)在(0,+∞)为增函数,
∴$\left\{\begin{array}{l}{{x}^{2}-1>0}\\{x+1>0}\\{{x}^{2}-1<x+1}\end{array}\right.$,即$\left\{\begin{array}{l}{x>1或x<-1}\\{x>-1}\\{-1<x<2}\end{array}\right.$,即1<x<2,
故不等式的解集为(1,2),
故选:B.
点评 本题主要考查不等式的求解,根据条件构造函数,利用导数研究函数的单调性是解决本题的关键.
练习册系列答案
相关题目
19.在△ABC中,已知a2tanB=b2tanA,则△ABC的形状是( )
| A. | 等腰三角形 | B. | 直角三角形 | ||
| C. | 等腰直角三角形 | D. | 等腰三角形或直角三角形 |
4.如图,在正方体ABCD-A1B1C1D1中,B1D与C1D1所成角的正弦值是( )

| A. | $\frac{\sqrt{6}}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
14.下列函数是奇函数的是( )
| A. | f(x)=-|sin x| | B. | f(x)=cos(-|x|) | C. | f(x)=sin|x| | D. | f(x)=x•sin|x| |