题目内容

20.在△ABC中,a,b,c分别是内角A,B,C的对边,已知a=$\sqrt{3}$,b=3,C=30°,则△ABC的外接圆的面积为3π.

分析 由已知数据和余弦定理可得c值,再由正弦定理可得外接圆半径,可得面积.

解答 解:∵在△ABC中a=$\sqrt{3}$,b=3,C=30°,
∴由余弦定理可得c2=a2+b2-2abcosC
=3+9-2×$\sqrt{3}$×3×$\frac{\sqrt{3}}{2}$=3,解得c=$\sqrt{3}$,
设△ABC的外接圆的半径为R,则2R=$\frac{c}{sinC}$=$\frac{\sqrt{3}}{\frac{1}{2}}$=2$\sqrt{3}$,
解得R=$\sqrt{3}$,故面积S=πR2=3π,
故答案为:3π.

点评 本题考查正余弦定理解三角形,涉及圆的面积公式,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网