题目内容
17.若抛物线y2=2px(p>0)上的点$({x}_{0},2)({x}_{0}>\frac{p}{2})$到其焦点的距离为$\frac{5}{2}$,则p=1.分析 由题意,$\left\{\begin{array}{l}{2p{x}_{0}=4}\\{{x}_{0}+\frac{p}{2}=\frac{5}{2}}\end{array}\right.$,消去x0,可得p2-5p+4=0,求出p,验证即可得出结论.
解答 解:由题意,$\left\{\begin{array}{l}{2p{x}_{0}=4}\\{{x}_{0}+\frac{p}{2}=\frac{5}{2}}\end{array}\right.$,消去x0,可得p2-5p+4=0,
∴p=1或4,
p=4时,x0=$\frac{1}{2}$<$\frac{p}{2}$,不符合题意.
故答案为1.
点评 本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.
练习册系列答案
相关题目
8.已知命题p:?x≥4,log2x≥2;命题q:在△ABC中,若A>$\frac{π}{3}$,则sinA>$\frac{{\sqrt{3}}}{2}$.则下列命题为真命题的是( )
| A. | p∧q | B. | p∧(?q) | C. | (?p)∧(?q) | D. | (?p)∨q |
5.已知A={1,3,9,27,81},B={y|y=log3x,x∈A},则A∩B=( )
| A. | {1,3} | B. | {3,27,81} | C. | {1,3,9} | D. | {9,27} |
18.已知a=0.33,b=30.3,c=0.23,则a,b,c的大小关系为( )
| A. | a<b<c | B. | c<a<b | C. | b<a<c | D. | c<b<a |