题目内容
抛物线y=ax2+bx在第一象限内与直线x+y=4相切.此抛物线与x轴所围成的图形的面积记为S.求使S达到最大值的a、b值,并求Smax.
![]()
解析:
依题设可知抛物线为凸形,它与x轴的交点的横坐标分别为x1=0,x2=-b/a,所以
(1)
又直线x+y=4与抛物线y=ax2+bx相切,即它们有唯一的公共点,
由方程组![]()
得ax2+(b+1)x-4=0,其判别式必须为0,即(b+1)2+16a=0.
于是
代入(1)式得:
,
;
令S'(b)=0;在b>0时得唯一驻点b=3,且当0<b<3时,S'(b)>0;当b>3时,S'(b)<0.故在b=3时,S(b)取得极大值,也是最大值,即a=-1,b=3时,S取得最大值,且
.
练习册系列答案
相关题目
已知抛物线y=ax2+bx+c与直线y=-bx交于A、B两点,其中a>b>c,a+b+c=0,设线段AB在x轴上的射影为A1B1,则|A1B1|的取值范围是( )
A、(
| ||||
B、(
| ||||
C、(0,
| ||||
D、(2, 2
|
抛物线y=ax2(a≠0)的焦点坐标是( )
A、(
| ||
B、(-
| ||
C、(0,-
| ||
D、(0,
|