题目内容
已知f(x)=
,则f(-2)=( )
|
| A、-1 | B、3 | C、5 | D、1 |
考点:函数的值
专题:函数的性质及应用
分析:利用分段函数的性质求解.
解答:
解:∵f(x)=
,
∴f(-2)=-(-2)+3=5.
故选:C.
|
∴f(-2)=-(-2)+3=5.
故选:C.
点评:本题考查函数值的求法,解题时要认真审题,注意分段函数的性质的合理运用.
练习册系列答案
相关题目
函数y=x3是( )
| A、偶函数且是增函数 |
| B、奇函数且是增函数 |
| C、偶函数且是减函数 |
| D、奇函数且是减函数 |
函数f(x)=x2-2ax+2在(-∞,3)上递减,则a的取值范围是( )
| A、[-3,+∞) |
| B、(-∞,-3] |
| C、(-∞,3} |
| D、[3,+∞) |
已知函数sgn(x)=
,f(x)=x2•sgn[1+sgn(x)]+2x•sgn[1-sgn(x)],若函数g(x)=f(x)-m有两个零点,则m的取值范围是( )
|
| A、m<0 | B、0<m<1 |
| C、0<m≤1 | D、m>1 |
| π |
| 2 |
A、y=2sin(2x-
| ||||
B、y=2sin(x+
| ||||
C、y=2sin(
| ||||
D、y=2sin(2x+
|
在同一个坐标系中,函数y=3x与y=log
x的图象最可能是( )
| 1 |
| 3 |
| A、 |
| B、 |
| C、 |
| D、 |