题目内容

设函数f(x)=2sin(ωx+
π
3
),ω>0,x∈R且以3π为最小正周期.
(1)求f(x)的解析式;
(2)已知
π
2
>β>0>α>-
π
2
,f(
π
4
+
3
2
α)=
8
5
,f(
3
2
β-
π
2
)=
10
13
,求cos(α-β)的值.
考点:由y=Asin(ωx+φ)的部分图象确定其解析式,两角和与差的余弦函数,三角函数的周期性及其求法
专题:综合题,三角函数的求值
分析:(1)利用周期求出ω,即可求f(x)的解析式;
(2)利用cos(α-β)=cosαcosβ+sinαsinβ,即可求cos(α-β)的值.
解答: 解:(1)∵函数f(x)=2sin(ωx+
π
3
),ω>0,x∈R且以3π为最小正周期,
ω
=3π,
∴ω=
2
3
,…(2分)
∴f(x)=2sin(
2
3
x+
π
3
).…(4分)
(2)由f(
π
4
+
3
2
α)=2sin[
2
3
π
4
+
3
2
α)+
π
3
]=2cosα=
8
5
,得cosα=
4
5
.…(6分)
∵0>α>-
π
2
,∴sinα=-
3
5
.…(7分)
由f(
3
2
β-
π
2
)═2sin[
2
3
3
2
β-
π
2
)+
π
3
]=2sinβ=
10
13
,得sinβ=
5
13
.…(9分)
π
2
>β>0,∴cosβ=
12
13
.…(10分)
∴cos(α-β)=cosαcosβ+sinαsinβ=
4
5
×
12
13
-
3
5
×
5
13
=
33
65
.…(12分)
点评:本题考查同角三角函数的基本关系,诱导公式的应用,两角和差的三角公式的应用,要特别注意三角函数值的符号.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网