题目内容

4.已知函数$f(x)=1-\frac{2}{{{2^x}+1}}$.
(1)求证f(x)是奇函数;
(2)试判断f(x)的单调性并证明.

分析 (1)可看出f(x)的定义域为R,变f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,这样便可求出f(-x)=-f(x),从而证出f(x)为奇函数;
(2)容易看出f(x)在R上单调递增,根据增函数的定义,设任意的x1,x2∈R,且x1<x2,然后作差,通分,从而证明f(x1)<f(x2)便可得出f(x)在R上单调递增.

解答 解:(1)证明:f(x)的定义域为R;
$f(x)=1-\frac{2}{{2}^{x}+1}=\frac{{2}^{x}-1}{{2}^{x}+1}$;
∴$f(-x)=\frac{{2}^{-x}-1}{{2}^{-x}+1}=\frac{1-{2}^{x}}{1+{2}^{x}}=-f(x)$;
∴f(x)是奇函数;
(2)f(x)在R上单调递增,证明如下:
设x1,x2∈R,且x1<x2,则:
$f({x}_{1})-f({x}_{2})=\frac{2}{{2}^{{x}_{2}}+1}-\frac{2}{{2}^{{x}_{1}}+1}$=$\frac{2({2}^{{x}_{1}}-{2}^{{x}_{2}})}{({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)}$;
∵x1<x2
∴${2}^{{x}_{1}}<{2}^{{x}_{2}}$,${2}^{{x}_{1}}-{2}^{{x}_{2}}<0$;
又$({2}^{{x}_{1}}+1)({2}^{{x}_{2}}+1)>0$;
∴f(x1)<f(x2);
∴f(x)在R上单调递增.

点评 考查奇函数的定义及根据奇函数定义证明一个函数为奇函数的方法和过程,增函数的定义,以及根据增函数的定义判断并证明一个函数为增函数的方法和过程,作差的方法比较f(x1),f(x2),作差后是分式的一般要通分.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网