题目内容
在△OAB中,C是AB边上一点,且| BC |
| CA |
| OA |
| a |
| OB |
| b |
| a |
| b |
| OC |
分析:用向量共线及三角形法则求
,再用三角形法则求
| BC |
| OC |
解答:解:∵
=λ(λ>0),
∴
=
在△OAB中,
=
,
=
∴
=
-
=
-
∴
=
(
-
)
在△OCB中,
=
+
=
+
(
-
)=
+
答:
=
+
| BC |
| CA |
∴
| BC |
| λ |
| λ+1 |
| BA |
在△OAB中,
| OA |
| a |
| OB |
| b |
∴
| BA |
| OA |
| OB |
| a |
| b |
∴
| BC |
| λ |
| λ+1 |
| a |
| b |
在△OCB中,
| OC |
| OB |
| BC |
| b |
| λ |
| λ+1 |
| a |
| b |
| λ |
| λ+1 |
| a |
| 1 |
| λ+1 |
| b |
答:
| OC |
| λ |
| λ+1 |
| a |
| 1 |
| λ+1 |
| b |
点评:考查向量共线定理、向量加减运算的三角形法则.
练习册系列答案
相关题目