题目内容
| OC |
| 2 |
| 3 |
| OA |
| OP |
| OB |
| OC |
-
| 3 |
| 2 |
-
.| 3 |
| 2 |
分析:根据OD是△OBC的中线,得
=
+
.由直线l∥OD,可得存在实数k使
=k
,再化简得到
=
+
=
+(
+
)
,结合已知等式可得
=λ1且
+
=λ2,由此即可算出则λ1-λ2的值.
| OD |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
| AP |
| OD |
| OP |
| OA |
| AP |
| k |
| 2 |
| OB |
| 3 |
| 2 |
| k |
| 2 |
| OC |
| k |
| 2 |
| 3 |
| 2 |
| k |
| 2 |
解答:解:
∵D是BC的中点,∴
=
+
∵
=
,∴
=
∵直线l∥OD,∴存在实数k,使
=k
,
因此,
=
+
=
+k
=
+k(
+
)=
+(
+
)
,
∵由已知,得
=λ1
+λ2
∴根据平面向量基本定理,得
=λ1且
+
=λ2
因此,λ1-λ2=
-(
+
)=-
故答案为:-
| OD |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
∵
| OC |
| 2 |
| 3 |
| OA |
| OA |
| 3 |
| 2 |
| OC |
∵直线l∥OD,∴存在实数k,使
| AP |
| OD |
因此,
| OP |
| OA |
| AP |
| 3 |
| 2 |
| OC |
| OD |
| 3 |
| 2 |
| OC |
| 1 |
| 2 |
| OB |
| 1 |
| 2 |
| OC |
| k |
| 2 |
| OB |
| 3 |
| 2 |
| k |
| 2 |
| OC |
∵由已知,得
| OP |
| OB |
| OC |
∴根据平面向量基本定理,得
| k |
| 2 |
| 3 |
| 2 |
| k |
| 2 |
因此,λ1-λ2=
| k |
| 2 |
| 3 |
| 2 |
| k |
| 2 |
| 3 |
| 2 |
故答案为:-
| 3 |
| 2 |
点评:本题在△OAB中,给出边的三等分点C和△OBC的中线OD,探索向量
表示成
、
的线性组合问题,着重考查了平面向量的线性运算、平面向量的基本定理及其意义等知识,属于中档题.
| OP |
| OB |
| OC |
练习册系列答案
相关题目