题目内容
| OC |
| 2 |
| 3 |
| OA |
| OP |
| OB |
| OC |
分析:由OD是△OBC的中线,可得
=
(
+
).由直线l∥OD,可得
=k
,进而可得
=
+
.比较已知可得λ1,λ2的值,计算可得.
| OD |
| 1 |
| 2 |
| OB |
| OC |
| AP |
| OD |
| OP |
| k |
| 2 |
| OB |
| k+3 |
| 2 |
| OC |
解答:解:∵D是BC的中点,∴
=
(
+
),
∵
=
,∴
=
,
∵直线l∥OD,∴存在实数k,使
=k
,
故
=
+
=
+k
=
+
(
+
)
=
+
,又由已知可得
=λ1
+λ2
,
故可得
=λ1,
=λ2,
故λ1-λ2=
-
=-
故选B
| OD |
| 1 |
| 2 |
| OB |
| OC |
∵
| OC |
| 2 |
| 3 |
| OA |
| OA |
| 3 |
| 2 |
| OC |
∵直线l∥OD,∴存在实数k,使
| AP |
| OD |
故
| OP |
| OA |
| AP |
| 3 |
| 2 |
| OC |
| OD |
| 3 |
| 2 |
| OC |
| k |
| 2 |
| OB |
| OC |
=
| k |
| 2 |
| OB |
| k+3 |
| 2 |
| OC |
| OP |
| OB |
| OC |
故可得
| k |
| 2 |
| k+3 |
| 2 |
故λ1-λ2=
| k |
| 2 |
| k+3 |
| 2 |
| 3 |
| 2 |
故选B
点评:本题考查平面向量的线性运算、平面向量的基本定理及其意义等知识,属中档题.
练习册系列答案
相关题目