ÌâÄ¿ÄÚÈÝ
£¨2008•Èç¶«ÏØÈýÄ££©ÔڵȲîÊýÁÐ{an}ÖУ¬¹«²îd¡Ù0£¬ÇÒa5=6£¬
£¨1£©Çóa4+a6µÄÖµ£®
£¨2£©µ±a3=3ʱ£¬ÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÒ»Ïîam£¨mÕýÕûÊý£©£¬Ê¹µÃ a3£¬a5£¬am³ÉµÈ±ÈÊýÁУ¬Èô´æÔÚ£¬ÇómµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©Èô×ÔÈ»Êýn1£¬n2£¬n3£¬¡£¬nt£¬¡£¬£¨tΪÕýÕûÊý£©Âú×ã5£¼n1£¼n2£¼¡£¼nt£¼¡£¬Ê¹µÃa3£¬a5£¬an1£¬¡£¬ant£¬¡³ÉµÈ±ÈÊýÁУ¬Çóa3µÄËùÓпÉÄÜÖµ£®
£¨1£©Çóa4+a6µÄÖµ£®
£¨2£©µ±a3=3ʱ£¬ÔÚÊýÁÐ{an}ÖÐÊÇ·ñ´æÔÚÒ»Ïîam£¨mÕýÕûÊý£©£¬Ê¹µÃ a3£¬a5£¬am³ÉµÈ±ÈÊýÁУ¬Èô´æÔÚ£¬ÇómµÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©Èô×ÔÈ»Êýn1£¬n2£¬n3£¬¡£¬nt£¬¡£¬£¨tΪÕýÕûÊý£©Âú×ã5£¼n1£¼n2£¼¡£¼nt£¼¡£¬Ê¹µÃa3£¬a5£¬an1£¬¡£¬ant£¬¡³ÉµÈ±ÈÊýÁУ¬Çóa3µÄËùÓпÉÄÜÖµ£®
·ÖÎö£º£¨1£©¸ù¾ÝµÈ²îÊýÁеÄÐÔÖÊ£¬Ò×µÃa4+a6=2a5=12£»
£¨2£©¸ù¾ÝµÈ²îÊýÁеÄͨÏʽ£¬½¨Á¢·½³Ì×é½â³öÊ×Ïîa1Ó빫²îd£¬µÃµ½an=
(n-1)£¬ÔÙÓɵȱÈÖÐÏîµÄ¶¨Ò彨Á¢¹ØÏµÊ½£ºa52=
am£¬×ª»¯Îª¹ØÓÚmµÄ·½³Ì²¢½âÖ®¿ÉµÃm=9£»
£¨3£©ÓÉÌâÒâÓõȲîÊýÁÐͨÏʽ»¯¼ò
=a3•an1£¬µÃ[6+£¨n1-5£©d]£¨6-2d£©=36½â³öd=3-
£¬¿ÉµÃd¡ÊQ£®ÀûÓõȱÈÊýÁеÄͨÏʽ£¬½áºÏÌâÒâËã³öant=a5•(
)t£¬¿ÉµÃnt¹ØÓÚdºÍtµÄ±í´ïʽ£¬ÔÙÓÉnt¡Ê{6£¬7£¬8£¬9£¬10£¬¡}¶ÔÒ»ÇÐt¡ÊZ+³ÉÁ¢£¬¿ÉµÃ
¡Ê{2£¬3£¬4£¬5£¬¡}£®ÔÙÉè
=m£¬ÀûÓÃÇ°ÃæµÄ¹ØÏµÊ½»¯¼ò²¢½áºÏ¶þÏÀíµÃµ½
¡ÊZºã³ÉÁ¢£¬¼´¿ÉµÃµ½a3µÄËùÓпÉÄÜÖµ£®
£¨2£©¸ù¾ÝµÈ²îÊýÁеÄͨÏʽ£¬½¨Á¢·½³Ì×é½â³öÊ×Ïîa1Ó빫²îd£¬µÃµ½an=
| 3 |
| 2 |
| a | 3 |
£¨3£©ÓÉÌâÒâÓõȲîÊýÁÐͨÏʽ»¯¼ò
| a | 2 5 |
| 6 |
| n1-5 |
| a5 |
| a3 |
| 3 |
| 3-d |
| 3 |
| 3-d |
| 2m(mt-1) |
| m-1 |
½â´ð£º½â£º£¨1£©¡ßÔڵȲîÊýÁÐ{an}ÖУ¬¹«²îd¡Ù0£¬ÇÒa5=6£¬
¡à2a5=a4+a6£¬½áºÏa5=6µÃa4+a6=12¡£¨3·Ö£©
£¨2£©ÔڵȲîÊýÁÐ{an}ÖУ¬¹«²îd¡Ù0£¬ÇÒa5=6£¬a3=3
Ôò
⇒d=
£¬a1=0£¬
¡àan=
(n-1)n¡ÊN*¡£¨5·Ö£©
ÓÖ¡ßa52=
am£¬¿ÉµÃ36=3am£¬
¡à12=
(m-1)£¬½âÖ®µÃm=9¡£¨8·Ö£©
£¨3£©¡ßa3=6-2d£¬an1=6+(n1-5)d
¡àÓÉa3£¬a5£¬an1³ÉµÈ±ÈÊýÁУ¬µÃµ½
=a3•an1
¼´[6+£¨n1-5£©d]£¨6-2d£©=36£¬
¡àd=
=3-
£¬Óɴ˿ɵÃd¡ÊQ¡£¨14·Ö£©
ÓÖ¡ßa3£¬a5£¬an1£¬¡£¬ant£¬¡³ÉµÈ±ÈÊýÁУ¬¡àant=a5•(
)t=a5+(nt-5)•d
¡ànt=5+
¡Ê{6£¬7£¬8£¬9£¬10£¬¡}¶ÔÒ»ÇÐt¡ÊZ+³ÉÁ¢£¬
¼´
¡Ê{2£¬3£¬4£¬5£¬¡}£¨*£©£¬
Éè
=m£¨m¡Ê{2£¬3£¬4£¬5£¬¡}£©£¬
¡àd=3-
£¬µÃ
=
=
£¬
ÓɶþÏîʽ¶¨ÀíµÃ
¡ÊZºã³ÉÁ¢
¡àa3=6-2d=6-2(3-
)=
£¨m¡Ê{2£¬3£¬4£¬5£¬¡}£©
¡à2a5=a4+a6£¬½áºÏa5=6µÃa4+a6=12¡£¨3·Ö£©
£¨2£©ÔڵȲîÊýÁÐ{an}ÖУ¬¹«²îd¡Ù0£¬ÇÒa5=6£¬a3=3
Ôò
|
| 3 |
| 2 |
¡àan=
| 3 |
| 2 |
ÓÖ¡ßa52=
| a | 3 |
¡à12=
| 3 |
| 2 |
£¨3£©¡ßa3=6-2d£¬an1=6+(n1-5)d
¡àÓÉa3£¬a5£¬an1³ÉµÈ±ÈÊýÁУ¬µÃµ½
| a | 2 5 |
¼´[6+£¨n1-5£©d]£¨6-2d£©=36£¬
¡àd=
| 3n1-21 |
| n1-5 |
| 6 |
| n1-5 |
ÓÖ¡ßa3£¬a5£¬an1£¬¡£¬ant£¬¡³ÉµÈ±ÈÊýÁУ¬¡àant=a5•(
| a5 |
| a3 |
¡ànt=5+
6(
| ||
| d |
¼´
| 3 |
| 3-d |
Éè
| 3 |
| 3-d |
¡àd=3-
| 3 |
| m |
6(
| ||
| d |
| 6mt+1-6 | ||
3-
|
| 2m(mt-1) |
| m-1 |
ÓɶþÏîʽ¶¨ÀíµÃ
| 2m(mt-1) |
| m-1 |
¡àa3=6-2d=6-2(3-
| 3 |
| m |
| 6 |
| m |
µãÆÀ£º±¾Ìâ¸ø³öµÈ²î¡¢µÈ±ÈÊýÁÐÄ£ÐÍ£¬ÇóͨÏʽºÍ²ÎÊýmµÄÖµ£¬²¢ÌÖÂÛÂú×ãÌõ¼þµÄÏîa3ËùÓпÉÄÜÖµ£®×ÅÖØ¿¼²éÁ˵ȲîµÈ±ÈÊýÁеÄͨÏʽ¡¢ÕûÊý½âµÄÌÖÂۺͶþÏîʽ¶¨ÀíµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿