题目内容
【题目】如图,在四棱锥
中,平面
平面
,底面
是边长为2的正方形,且
,
.
![]()
(Ⅰ)证明:
;
(Ⅱ)求平面
与平面
所成二面角的正弦值.
【答案】(Ⅰ)见解析 (Ⅱ)![]()
【解析】
(1)面面垂直只需证明线面垂直即证:![]()
(2)建立空间直角坐标系,利用平面
与面
的法向量所成的夹角公式即可求出平面
与平面![]()
(Ⅰ)
![]()
证明:(1)因为平面
面
,平面
平面
,
,
平面
,所以
平面
又
平面
,所以
又
,
,所以
面
又
面
,所以平面
平面
(2)取DC的中点O,连接MO,由DM=MC得MO⊥DC。
又MO⊥BC,所以MO⊥平面ABCD,如图建立空间直角坐标系
则M(0,0,1),A(2,-1,0),B(2,1,0)
,
.
设
是平面MAB的一个法向量
则
即
可取
,
是平面MCD的一个法向量
平面MAB与平面MCD所成二面角的正弦值是![]()
练习册系列答案
相关题目
【题目】
年
月
日“世界读书日”来临之际,某校为了了解中学生课外阅读情况,随机抽取了
名学生,并获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表.
组号 | 分组 | 频数 | 频率 |
1 | [0,5) | 5 | 0.05 |
2 | [5,10) | a | 0.35 |
3 | [10,15) | 30 | b |
4 | [15,20) | 20 | 0.20 |
5 | [20,25] | 10 | 0.10 |
合计 | 100 | 1 | |
(1)求
、
的值
(2)作出这些数据的频率分布直方图
![]()
(3)假设每组数据组间是平均分布的,试估计该组数据的平均数和中位数.(同一组中的数据用该组区间的中点值作代表)