题目内容
已知椭圆的焦点F1(0,-1),F2(0,1),P为椭圆上一点,且2|F1F2|=|PF1|+|PF2|,则椭圆的方程为
- A.

- B.

- C.

- D.

B
分析:根据2|F1F2|=|PF1|+|PF2|,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判断焦点所在坐标轴,就可得到椭圆方程.
解答:∵2|F1F2|=|PF1|+|PF2|,
∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵椭圆的两焦点为F1(0,-1),F2(0,1),∴c=1,
∴a=2,b2=a2-c2=3,
又∵椭圆的焦点在y轴上,
∴椭圆方程为
.
故选B.
点评:本题主要考查了应用椭圆的定义以及等差中项的概念求椭圆方程,关键是求a,b的值.
分析:根据2|F1F2|=|PF1|+|PF2|,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判断焦点所在坐标轴,就可得到椭圆方程.
解答:∵2|F1F2|=|PF1|+|PF2|,
∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵椭圆的两焦点为F1(0,-1),F2(0,1),∴c=1,
∴a=2,b2=a2-c2=3,
又∵椭圆的焦点在y轴上,
∴椭圆方程为
故选B.
点评:本题主要考查了应用椭圆的定义以及等差中项的概念求椭圆方程,关键是求a,b的值.
练习册系列答案
相关题目