题目内容
已知函数f(x)=|x|+|2-x|,若g(x)=f(x)-a的零点个数不为0,则a的最小值为 .
考点:函数零点的判定定理
专题:函数的性质及应用
分析:根据g(x)=f(x)-a的零点个数不为0,即方程a=f(x)有解,转化为求函数f(x)=|x|+|2-x|的值域,利用绝对值不等式的几何意义即可求得结果.
解答:
解:由绝对值不等式的几何意义知:
f(x)=|x|+|2-x|≥2;
若g(x)=f(x)-a的零点个数不为0,
即方程a=f(x)有解,因此a≥2.
故a的最小值为2,
故答案为:2.
f(x)=|x|+|2-x|≥2;
若g(x)=f(x)-a的零点个数不为0,
即方程a=f(x)有解,因此a≥2.
故a的最小值为2,
故答案为:2.
点评:此题是基础题.考查函数的零点与函数图象的交点之间的关系,体现了转化的能力,同时考查了学生灵活应用知识分析解决问题的能力和计算能力.
练习册系列答案
相关题目
定义
=m1m4-m2m3,将函数f(x)=
的图象向左平移ϕ(ϕ>0)个单位长度后,得到函数g(x),若g(x)为奇函数,则ϕ的值可以是( )
|
|
|
|
A、
| ||
B、
| ||
C、
| ||
D、
|
某几何体的正视图与侧视频如图所示,则该几何体的俯视图不可能是( )
| A、 |
| B、 |
| C、 |
| D、 |
| π |
| 2 |
| A、-1 | ||
B、-
| ||
C、
| ||
| D、1 |
设{an}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这三个数仍成等差数列,则这样不同的等差数列最多有( )
| A、90个 | B、120个 |
| C、160个 | D、180个 |
若函数y=x•2x 且y′=0,则x=( )
A、-
| ||
B、
| ||
| C、-ln2 | ||
| D、ln2 |