题目内容

若函数f(x)的零点与g(x)=4x+2x-2的零点之差的绝对值不超过0.25,则f(x)可以是以下函数中的
 
(填序号);
①f(x)=4x-1;     
②f(x)=(x-1)2
③f(x)=ex-1;      
④f(x)=ln(x-0.5).
考点:函数的零点
专题:函数的性质及应用
分析:先判断g(x)的零点所在的区间,再求出各个选项中函数的零点,看哪一个能满足与g(x)=4x+2x-2的零点之差的绝对值不超过0.25.
解答: 解:∵g(x)=4x+2x-2在R上连续,且g(
1
4
)=
2
+
1
2
-2=
2
-
3
2
<0,g(
1
2
)=2+1-2=1>0.
设g(x)=4x+2x-2的零点为x0,则
1
4
<x0
1
2

0<x0-
1
4
1
4
,∴|x0-
1
4
|<
1
4

又f(x)=4x-1零点为x=
1
4

f(x)=(x-1)2零点为x=1;
f(x)=ex-1零点为x=0;
f(x)=ln(x-0.5)零点为x=
3
2

所以只有①满足题意.
故答案为:①.
点评:本题考查判断函数零点所在的区间以及求函数零点的方法,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网