题目内容
15.若关于x的方程x2-2x+2-a=0的两根分别为x1,x2,分别探究满足下列条件的实数a的取值范围.(1)x1>0,x2>0;
(2)x1>2,x2<-1.
分析 (1)有两根,所以大前提是△≥0,然后根据韦达定理列出含参数a的不等式;
(2)有两根,所以大前提是△≥0,然后由两根函数值的大小列出含参数a的不等式.
解答 (1)由题意,x1>0,x2>0可知,
△=(-2)2-4×1×(2-a)≥0且x1x2=$\frac{2-a}{1}$>0,
得1≤a<2;
(2)由题意,x1>2,x2<-1可知,
△=(-2)2-4×1×(2-a)≥0且f(2)<0且f(-1)<0,
解得a>5.
点评 考察二次函数的根与系数的关系问题时一定要注意有几个根,注意判别式的取值范围.
练习册系列答案
相关题目
20.
如图,在△ABC中,AB=2,AC=4,线段CB的垂直平分线交线段AC于D,AD-DB=1,则△BCD的面积为( )
| A. | $\frac{7}{10}$ | B. | $\frac{9}{10}$ | C. | 2 | D. | 8 |