题目内容

10.若函数f(x)=|x+1|-2|x-a|(a>0)的图象与x轴围成的三角形的面积大于6,求a的取值范围.

分析 化为分段函数可得三个交点,由面积公式可得a的不等式,解不等式可得.

解答 解:化函数为分段函数f(x)=$\left\{\begin{array}{l}{x-1-2a,x<-1}\\{3x+1-2a,-1≤x≤a}\\{-x+1+2a,x>a}\end{array}\right.$,
∴函数f(x)的图象与x轴围成的三角形的三个顶点分别为A($\frac{2a-1}{3}$,0),B(2a+1,0),C(a,a+1),
∴△ABC的面积S=$\frac{2}{3}$(a+1)2,故$\frac{2}{3}$(a+1)2>6,解得a>2,
∴a的取值范围为(2,+∞)

点评 本题考查绝对值函数,涉及三角形的公式,化为分段函数是解决问题的关键,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网