题目内容
(2013•合肥二模)在数{an}中,a1=1,a2=
,an+1-
an+an-1=0(n≥2,且n∈N*)
(I)若数列{an+1+λan}是等比数列,求实数λ;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设Sn=
求证:Sn<
.
| 10 |
| 3 |
| 10 |
| 3 |
(I)若数列{an+1+λan}是等比数列,求实数λ;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)设Sn=
| n |
| i=1 |
| 1 |
| ai |
| 3 |
| 2 |
分析:(I)由数列{an+1+λan}是等比数列,可设an+1+λan=μ(an+λan-1),根据条件即可得到结论;
(II)n≥2时,an-
an-1=3n-1①,an-3an-1=
②,从而可求数列的通项;
(III)证明
<
•
(n≥2),利用放缩法,可得结论.
(II)n≥2时,an-
| 1 |
| 3 |
| 1 |
| 3n-1 |
(III)证明
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| an-1 |
解答:(I)解:由数列{an+1+λan}是等比数列,可设an+1+λan=μ(an+λan-1)(n≥2)
∴an+1+(λ-μ)an-λμan-1=0,
∵an+1-
an+an-1=0,
∴
,
∴λ=-
或λ=-3;
(II)解:由上知,n≥2时,an-
an-1=3n-1①
∴an-3an-1=
②
由①②可得an=
(3n-
);
(III)证明:由(II)知,an=
(3n-
)>0,
∵an-3an-1=
,∴an>3an-1
∴
<
•
(n≥2)
∴Sn<
+
(
+
+…+
)=
+
(
+
+…+
+
)-
<
+
Sn
∴Sn<
.
∴an+1+(λ-μ)an-λμan-1=0,
∵an+1-
| 10 |
| 3 |
∴
|
∴λ=-
| 1 |
| 3 |
(II)解:由上知,n≥2时,an-
| 1 |
| 3 |
∴an-3an-1=
| 1 |
| 3n-1 |
由①②可得an=
| 3 |
| 8 |
| 1 |
| 3n |
(III)证明:由(II)知,an=
| 3 |
| 8 |
| 1 |
| 3n |
∵an-3an-1=
| 1 |
| 3n-1 |
∴
| 1 |
| an |
| 1 |
| 3 |
| 1 |
| an-1 |
∴Sn<
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| a1 |
| 1 |
| 3 |
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an-1 |
| 1 |
| an |
| 1 |
| 3an |
| 1 |
| a1 |
| 1 |
| 3 |
∴Sn<
| 3 |
| 2 |
点评:本题考查数列的通项,考查等比数列的运用,考查数列与不等式的联系,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目