题目内容

(2013•合肥二模)在锐角△ABC 中,角 A,B,C 所对边分别为 a,b,c,且 bsinAcosB=(2c-b)sinBcosA.
(I)求角A;
(II)已知向量
m
=(sinB,cosB),
n
=(cos2C,sin2C),求|
m
+
n
|的取值范围.
分析:(I)在锐角△ABC 中,由 bsinAcosB=(2c-b)sinBcosA利用正弦定理可得 sinBsin(A+B)=2sinCsinBcosA,解得cosA=
1
2
,从而求得A的值.
(Ⅱ)由题意可得
m
+
n
=(sinB+cos2C,cosB+sin2C),(
m
+
n
)
2
=(sinB+sin2C)2+(cosB+cos2C)2=2+2sin(
3
+C).由
π
6
<C<
π
2
,再根据正弦函数的定义域和值域求得 2+2sin(
3
+C)的范围,从而求得|
m
+
n
|的取值范围.
解答:解:(I)在锐角△ABC 中,由 bsinAcosB=(2c-b)sinBcosA利用正弦定理可得
sinBsinAcosB=2sinCsinBcosA-sinBsinBcosA,
故有sinBsin(A+B)=2sinCsinBcosA,解得cosA=
1
2
,∴A=
π
3

(Ⅱ)由题意可得
m
+
n
=(sinB+cos2C,cosB+sin2C),(
m
+
n
)
2
=(sinB+sin2C)2+(cosB+cos2C)2=2+2sin(B+2C)=2+2sin(
3
+C).
由于
π
6
<C<
π
2
,∴
6
3
+C<
6

∴-
1
2
<sin(
3
+C)<
1
2
,∴1<2+2sin(
3
+C)<3,
故|
m
+
n
|的取值范围为(1,
3
).
点评:本题主要考查正弦定理、三角函数的恒等变换,正弦函数的定义域和值域,求向量的模的方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网