题目内容
函数是偶函数,则的递减区间是______.
(本题满分12分)在直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为,直线与C交于A,B两点.
(1)写出C的方程;
(2)若,求k的值;
(3)若点A在第一象限,证明:当k>0时,恒有||>||.
(本小题满分12分)甲厂根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品(百台),其总成本为(万元),其中固定成本为万元,并且每生产1百台的生产成本为1万元(总成本固定成本+生产成本),销售收入,假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题
(1)写出利润函数的解析式(利润销售收入—总成本);
(2)甲厂生产多少台新产品时,可使盈利最多?
(本题满分16分)姜堰某化学试剂厂以x千克/小时的速度匀速生产某种产品(生产条件要求),每小时可获得的利润是千元.
(1)要使生产该产品2小时获得利润不低于30千元,求的取值范围;
(2)要使生产120千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求此最大利润.
已知幂函数的图像过点,则f(27)=________.
(本题满分10分,每小题各5分)计算下列各式
(1)
(2)
已知x∈R+,有不等式:x+≥2=2,x+=++≥3=3,….启发我们可能推广结论为:x+≥n+1(n∈N*),则a的值为 ( )
A.2n B.nn C.n2 D.2n+1
设函数.
(1)当时,解不等式;
(2)若的解集为,,求证:.
如图,空间四边形中,分别是的中点,且,.
(1)求证:平面;
(2)求证:四边形是矩形.