题目内容
8.已知过原点的动直线l与圆C1:x2+y2-6x+5=0相交于不同的两点A,B.(1)求圆C1的圆心坐标;
(2)求线段AB的中点M的轨迹C的方程.
分析 (1)通过将圆C1的一般式方程化为标准方程即得结论;
(2)设当直线l的方程为y=kx,通过联立直线l与圆C1的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论
解答 解:(1)∵圆C1:x2+y2-6x+5=0,
整理,得其标准方程为:(x-3)2+y2=4,
∴圆C1的圆心坐标为(3,0);
(2)设当直线l的方程为y=kx、A(x1,y1)、B(x2,y2),
与圆C1,联立方程组,消去y可得:(1+k2)x2-6x+5=0,
由△=36-4(1+k2)×5>0,可得k2<$\frac{4}{5}$
由韦达定理,可得x1+x2=$\frac{6}{1+{k}^{2}}$,
∴线段AB的中点M的轨迹C的参数方程为$\left\{\begin{array}{l}{x=\frac{3}{1+{k}^{2}}}\\{y=\frac{3k}{1+{k}^{2}}}\end{array}\right.$,其中-$\frac{2\sqrt{5}}{5}$<k<$\frac{2\sqrt{5}}{5}$,
∴线段AB的中点M的轨迹C的方程为:(x-$\frac{3}{2}$)2+y2=$\frac{9}{4}$,其中$\frac{5}{3}$<x≤3.
点评 本题考查求圆的方程、直线与曲线的位置关系问题,注意解题方法的积累,属于中档题.
练习册系列答案
相关题目
13.圆x2+y2-2x+4y=0与2tx-y-2-2t=0(t∈R)的位置关系为( )
| A. | 相离 | B. | 相切 | C. | 相交 | D. | 以上都有可能 |
20.某设备的使用年限x和维修费用y(万元)有如下统计数据
(1)请根据上表提供的数据,求出y与x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$
(2)试估计当使用年限为10年时,维修费用是多少?
(参考数据$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$,其中($\overline{x}$,$\overline{y}$)为样本中心.
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
(2)试估计当使用年限为10年时,维修费用是多少?
(参考数据$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$,其中($\overline{x}$,$\overline{y}$)为样本中心.
18.在△ABC中,a=1,b=6,C=60°,则三角形的面积为( )
| A. | $\frac{3}{2}$ | B. | $\frac{3\sqrt{3}}{2}$ | C. | 3$\sqrt{3}$ | D. | 3 |