题目内容

11.已知k∈Z,$\overrightarrow{AB}$=(k,1),$\overrightarrow{AC}$=(2,4),若|$\overrightarrow{AB}$|≤$\sqrt{17}$,则∠B是直角的概率是(  )
A.$\frac{4}{9}$B.$\frac{1}{3}$C.$\frac{2}{9}$D.$\frac{1}{9}$

分析 根据向量模长公式求出满足条件的k的个数,再根据古典概型的计算公式进行求解.

解答 解:由丨$\overrightarrow{AB}$丨≤$\sqrt{17}$,k∈Z知,
k2+1≤17,
∴k∈{-4,-3,-2,-1,0,1,2,3,4},
由$\overrightarrow{AB}$=(k,1),$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{AB}$=(2-k,3),且$\overrightarrow{AB}$⊥$\overrightarrow{BC}$,
∴$\overrightarrow{AB}$•$\overrightarrow{BC}$=k(2-k)+3=0,
解得k=-1,3,
∴∠ABC是直角的概率为P=$\frac{2}{9}$.
故选:C.

点评 本题主要考查了概率的计算,根据古典概型的概率公式进行计算即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网