题目内容

如果对于函数y=f(x)的定义域内的任意x,都有N≤f(x)≤M(M,N为常数)成立,那么称f(x)为可界定函数,M为上界值,N为下界值.设上界值中的最小值为m,下界值中的最大值为n.给出函数f(x)=2x+
2
x
,x∈(
1
2
,2),那么m+n的值(  )
A、大于9B、等于9
C、小于9D、不存在
分析:根据如果对于函数y=f(x)的定义域内的任意x,都有N≤f(x)≤M(M,N为常数)成立,那么称f(x)为可界定函数,M为上界值,N为下界值.设上界值中的最小值为m,下界值中的最大值为n.对于函数f(x)=2x+
2
x
,x∈(
1
2
,2),求其上界值中的最小值为m,下界值中的最大值为n,实质就是求函数f(x)=2x+
2
x
在[
1
2
,2]上的最值.
解答:解:f(x)=2x+
2
x
,x∈(
1
2
,2),
f(x)=2x+
2
x
≥2
4
=4,当且仅当x=1时,等号成立,
∴f(X)min=4,f(x)max=max{f(
1
2
),f(2)}<5
∴m=5,n=4,∴m+n=9.
故选B.
点评:考查对新定义的理解和应用,转化为求函数的最值问题,体现了转化的思想,属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网